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ABSTRACT: In this paper, we propose a strategy for improving the accuracy of own positions in FastSLAM 

(Fast-Simultaneous Localization And Mapping). One can see that estimation of self-position and mapping are 

important for an autonomous mobile robot. As one approach to do this, GPS (Global Positioning System) based 

self-positioning methods have been proposed. However, GPS-based method has disadvantage that positioning is 

difficult in the environment where radio waves cannot be received. On the other hand, it is well known that SLAM 

can perform self-positioning by sensing the external environment based on LiDAR sensors, cameras and other 

devices. Since SLAM does not require online communication, estimate of self-position and mapping can be 

performed without being affected by the driving environment. FastSLAM is one of the SLAM algorithms, and 

samples the path using a particle filter. Each particle represents one possible motion path of robots in the particle 

filter, and the observed information is used to calculate the weight of each particle and evaluate each path. In 

FastSLAM, when self-location is determined, a particle is selected by comparing its likelihood as evaluated by 

the likelihood function. Since this depends on observed information, the reliability of the estimate depends on the 

accuracy of the sensor. Thus, there is possibility that there are more useful particles among those not selected. In 

this paper, we propose a new FastSLAM algorithm that selects multiple candidates of particles in FastSLAM 

algorithm. In the proposed approach, multiple candidates are stored and estimates of self-position is determined 

by using multiple candidates in the next step. By maintaining multiple particles, more robust self-position 

estimation and mapping can be performed comparing with the conventional FastSLAM. In this paper, we show 

the proposed algorithm and numerical simulations are shown to evaluate the performance of the proposed 

algorithm. 
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INTRODUCTION 
 

    When an autonomous mobile robot is assigned the task of moving to a given destination, it is crucial to perform 

accurate self-localization and map creation. The use of GPS sensors is well known method for self-localization 

(Kumar, S., & Moore, K. B., 2002). However, in environments where radio signals cannot be received, such as 

tunnels, indoor settings and so on, traditional GPS-based positioning becomes challenging. For this problem, 

Simultaneous Localization and Mapping (SLAM) has been proposed (Fujimoto, M. et al., 2019; Thrun, S. et al., 

2005). SLAM does not rely on GPS positioning and can achieve both localization and mapping unaffected by the 

characteristics of the operating environment (Luo, J. et al., 2018). Among the various techniques for SLAM, the 

FastSLAM algorithm which incorporates particle filtering has gained attention, because it can address two primary 

problems: online SLAM problem and full SLAM one (Thrun, S. et al., 2005). However, it is well known that 

many implementations of FastSLAM require prior knowledge of features (Saitoh, T., & Kuroda, Y., 2009), such 

as obstacles observed by sensors. Therefore, there is a need for a method that can perform self-localization and 

environmental map creation without relying on prior knowledge of features. One such approach is "grid based 

FastSLAM," which integrates the concept of an occupancy grid map, representing the probability of the presence 

of obstacles, with FastSLAM (Ogawa, T. et al., 2021; Yasuda, R. et al., 2023). 

    In this paper, we propose a method to improve the accuracy of self-localization and map creation in grid based 

FastSLAM. In our approach multiple candidates for particles during the self-localization process are considered 
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and these are used to decide the final estimate in the subsequent step. In FastSLAM, the maximum likelihood 

method is commonly used to determine estimates of self-localization. However, In the present case, we consider 

the uncertainty in the posterior distribution of the particles when the estimate of self-localization is determined. 

Then, this information is preserved for the calculations in the next step, so that we can achieve better estimation 

giving consideration to observation errors. In this study, we vary the number of candidates of values retained and 

conduct numerical simulations using two different environmental maps to examine how the increase in candidates 

of estimates affects the estimation accuracy. Estimation accuracy will be evaluated using the Root Mean Squared 

Error (RMSE). 

 

FastSLAM ALGORITHM 
FastSLAM with Single Particle 

 

   We introduce the FastSLAM algorithm similar to the one described in reference (Ogawa, T. et al., 2021). The 

computational process of FastSLAM involves creating an initial set of 𝑴 candidates of self-localization, denoted 

as 𝑿[𝒌]  for 𝒌 = 𝟏, . . . , 𝑴. Additionally, Corresponding candidates of environmental maps denoted as 𝒎[𝒌] for 

these candidates of self-localizations are prepared. We refer to the combination of these candidates of self-

localizations and candidates of environmental maps, denoted as [𝑿[𝒌], 𝒎[𝒌]], as particles. The candidates of 

environmental maps 𝒎[𝒌] for each particle are structured as occupancy grid maps similar to the environmental 

map represented as two-dimensional grids. The occupancy grid maps consist of a grid-like structure and use from 

"0" to"1" to indicate the absence or presence of obstacles, respectively. Grid cells in unexplored areas are assigned 

a value of 0.5. Therefore, the initial values for all grid cells in both the environmental maps 𝒎 and 𝒎[𝒌], are set 

to 0.5. It is worth noting that, in FastSLAM, the estimation of self-localization is obtained by updating particles 

in accordance with the following steps: 

 

STEP 1 (Motion) 

 

Calculate the estimated self-localization 𝑿𝒕
[𝒌]

 at time step 𝒕 based on the self-localization of particles 𝑿𝒕−𝟏
[𝒌]

 at time 

step 𝒕 − 𝟏 and the input 𝒖𝒕 at time step 𝒕. 

 

STEP 2 (Update) 

 

Update the environmental map 𝒎[𝒌]  with the positions where obstacles are detected at time step 𝒕 using the 

observations 𝒛𝒕 obtained from sensors and the self-localization estimate 𝑿[𝒌] calculated in STEP 1. 

 

STEP 3 (Likelihood) 

 

Evaluate the similarity between the environmental maps 𝒎[𝒌] for each obtained particle and the environmental 

map 𝒎 from the previous time step. This evaluation is used to calculate the likelihood 𝝎[𝐤]  =  𝒑(𝒛𝒕|𝑿𝒕
[𝒌]

, 𝒎[𝒌]). 

The likelihood 𝝎[𝒌] can be calculated as follows:  

𝑚̅ =
1

2𝑁
∑(𝑚𝑖 + 𝑚𝑖

[𝑘]
)

𝑁

𝑖=1

 (1)

𝜔[𝑘] =
∑ (𝑚𝑖 − 𝑚̅) ∙𝑁

𝑖=1 (𝑚𝑖
[𝑘]

− 𝑚̅)

√∑ (𝑚𝑖 − 𝑚̅)2 ∙ (𝑚𝑖
[𝑘]

− 𝑚̅)
2

𝑁
𝑖=1

(2)

 

Here, 𝑵 represents the total number of grid cells in the occupancy grid map, and 𝒎𝒊 denotes the value of the grid 

cell in the environmental map. 

 

STEP 4 (Selection) 

 

Select the particle with the maximum likelihood as the self-localization estimate for time step 𝑡 . The self-

localization estimates 𝑋𝑡 at time step 𝑡 is based on the self-localization 𝑋[𝑘] associated with the particle that has 

the highest likelihood. Furthermore, by using on the obtained self-localization estimate 𝑋𝑡  and the sensor 

observations 𝑧𝑡, the positions of surrounding obstacles are calculated and update the environmental map 𝑚 is 

updated. 
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STEP 5 (Resampling) 

 

Resample particles by selecting them with a probability proportional to the likelihood 𝜔[𝑘] calculated in STEP 3. 

This resampling process helps update and maintain a set of particles that better represent the current state of the 

system. In the conventional method (Ogawa, T. et al., 2021), each particle's estimated position is evaluated using 

past estimations and the likelihood function (STEP 3). Furthermore, in STEP 4, the single particle with the highest 

likelihood is selected, and the position information and environmental map associated with that particle are used 

as the estimation for that time step. 

 

FastSLAM with Multiple Particles 

 

   In the conventional FastSLAM (Ogawa, T. et al., 2021), the metric used to obtain the estimate in STEP 4 is 

based solely on observation likelihood. As a result, if high-precision sensors are used, the estimation reliability is 

higher. However, typical sensors include observation noise, which leads to error accumulation as the estimation 

process progresses, resulting in larger estimation errors. In this study, we address this issue by introducing a new 

approach. We retain a set of 𝑷 particles (𝒑 = 𝟏, 𝟐, … , 𝑷) as candidates of estimates, which are determined on the 

basis of the likelihood function. These candidates of estimates are represented as 𝑿̂𝒕
[𝒑]

 for self-localization and 

𝒎̂𝒕
[𝒑]

 for the environmental map. The likelihood calculation uses the candidates of the environmental map 𝒎̂𝒕−𝟏
[𝒑]

 

to perform the calculation and determine the estimate of self-localization at time 𝒕 − 𝟏  along with the 

environmental map 𝒎. This approach allows us to perform calculations that consider the uncertainty of the 

posterior distribution by determining self-localization in this manner. The overall algorithm is same to the 

updating methods described from STEP 1 to STEP 5, but STEP 3 and STEP 4 are modified as follows: 

 

STEP 3 (Likelihood Calculation and Determination) 

 

We evaluate the similarity by calculating the relationship between the obtained environmental map 𝒎[𝒌] for each 

particle and the candidates of environmental map 𝒎̂𝒕−𝟏
[𝒑]

. This evaluation is used to calculate the likelihood 

𝝎[𝒌,𝒑] = 𝒑(𝒛𝒕|𝑿𝒕
[𝒌]

, 𝒎̂𝒕
[𝒌,𝒑]

). The likelihood 𝝎[𝒌,𝒑] can be calculated as:  

 

𝑚̅[𝑘,𝑝] =
1

2𝑁
∑ (𝑚̂𝑖

[𝑝]
+ 𝑚𝑖

[𝑘]
)

𝑁

𝑖=1

 (3)

𝜔[𝑘,𝑝] =
∑ (𝑚̂𝑖

[𝑝]
− 𝑚̅[𝑝]) ∙𝑁

𝑖=1 (𝑚𝑖
[𝑘]

− 𝑚̅[𝑝])

√∑ (𝑚̂𝑖

[𝑝]
− 𝑚̅[𝑝])

2

∙ (𝑚𝑖
[𝑘]

− 𝑚̅[𝑝])
2

𝑁
𝑖=1

(4)

 

 

Additionally, using the candidates of number 𝑝 associated with the highest likelihood from time step 𝑡, we 

determine the candidates of estimate 𝑋̂𝑡−1
[𝑝]

 for the self-localization at time step 𝑡 − 1, for the environmental map 

𝑚. 

 

STEP 4 (Retention of Candidates of Estimates) 

 

Based on the likelihood obtained in STEP 3, retain 𝑃 candidates of estimates 𝑋̂𝑡
[𝑝]

 from the self-localization 𝑋𝑡
[𝑘]

 

associated with each particle. In addition, calculate the positions of surrounding obstacles from the obtained 

candidates of estimates and sensor observations 𝑧𝑡, update the candidates of environmental map 𝑚̂𝑡
[𝑝]

, and retain 

it. 

 

SIMULATION 

Simulation Environment 

 

In this paper, we consider two simulation environments, and these are shown in Figures 1 and 2. Each of the 

environmental maps represents a 5 [m] by 5 [m] area. In these figures blue point is the starting position and we 

set waypoints to navigate while avoiding obstacles. During the passage of waypoints in sequence, self-localization 

and mapping based on FastSLAM are performed. In this simulation is considered, we have provided the initial 

settings in Table 1. The resolution of the map indicates the side length of each grid cell in the occupancy grid 

map. Consequently, the number of grid cells, 𝑵, is calculated as 𝑵 = 𝟐, 𝟓𝟎𝟎, which is obtained by squaring 50 

(resulting from dividing one side of the 5 [m] area by a resolution of 0.1). Furthermore, we use 30 or 50 particles 
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and their initial values from a normal distribution with a mean of 0 and a standard deviation of 0.1 based on the 

actual self-localization of the robots. 

 

Robot Model 

 

    For robot model, a four-wheel drive model (Taruumi, Y. et al., 2013) described by:  

 

[𝒙̇ 𝒚̇ 𝜽̇]⊤ = [𝒗 𝐜𝐨𝐬 𝜽 𝒗 𝐬𝐢𝐧 𝜽
𝒗

𝒍
𝐭𝐚𝐧 𝝓] (𝟓) 

 

Here, (𝒙̇, 𝒚̇) represents coordinates of the robot's position, and the other variables are physical quantities shown 

in Table 2. In the case of a real-world robot, the robot and its sensors are subject to disturbances. Therefore, in 

this study, the errors are introduced in the form of distance errors proportional to the generated ratio following a 

normal distribution with a mean of 0 and a standard deviation of 0.1. These errors affect observation distances for 

the sensors, and observation angles. 

 

Evaluation Method 

 

    The evaluation is based on the root mean square error (RMSE) of the actual robot's position 𝑿𝒕  and the 

estimated position 𝑿̃𝒕 at each step in FastSLAM. RMSE for the total of 𝑺 steps during FastSLAM execution are 

defined as: 

𝐑𝐌𝐒𝐄 = √
𝟏

𝑺
∑‖𝑿𝒕 − 𝑿̃𝒕 ‖

𝟐
𝑺

𝒕=𝟏

(𝟔) 

Each verification is performed 100 times, and the variability in the results is evaluated using box-and-whisker 

plots. 

 

Simulation Results 

 

    These simulations are conducted with 𝟑𝟎 and 𝟓𝟎 particles for two different environmental maps. We set 𝑷 for 

each number of particles as follows: 

 

(i) The total number of particles is 𝟑𝟎 particles, the number of candidates of particles (𝑷) is 

𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎 𝐚𝐧𝐝 𝟐𝟓. 

 

(ii) The total number of particles is 𝟓𝟎 particles, the number of candidates of particles (𝑷) is 

𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎, 𝟐𝟓 𝐚𝐧𝐝 𝟑𝟎. 

Initial angle (𝜽) 0 [rad] 

Velocity (𝒗) 0.2 [m/s] 

Steering limit (𝝓) 0.4 [rad] 

Wheelbase (𝒍) 0.08 [m] 

Sampling time 0.1 [s] 

Sensing distance 1 [m] 

Sensing angle Front 180 [°] 

Map resolution 0.01 [𝐦𝟐] 

Figure 1. A Environmental map 1 and paths 

of movement. 

Figure 2. A Environmental map 2 and paths 

of movement. 

Table1. Initial values set(Robot).                               Table 2. Initial values set(Sensor・Map). 
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         Figure 3. Robot movement trajectory(map 1).              Figure 4. Output of mapping(map 1). 

 

                    

Figure 5. Robot movement trajectory(map 2).                  Figure 6. Output of mapping(map 2). 

 

In Figure 3, we show the result for the first environmental map with 𝟓𝟎 particles and 𝟏𝟎 candidates of particles, 

and red line is the actual robot trajectory and green line is the estimated trajectory. Figure 4 is the corresponding 

map created by the robot. Similarly, in Figure 5, we used the second environment map with 𝟓𝟎 particles and 𝟏𝟎 

candidates of particles. Figure 6 shows the map created by the robot for this environment. Figures 3 and 5 

demonstrate that self-localization performs well, estimating the robot's position accurately from the beginning. 

Figures 4 and 6 illustrate that the created maps also accurately capture obstacles within the sensor range and are 

in good agreement with the actual environment maps. In order to analyze simulation results with 𝟓𝟎 particles, 

Simulation one creates out 𝟏𝟎𝟎 times and created box-and-whisker plots so as to show the variability in the 

results. Please note that the results for simulations with 𝟑𝟎 particles are omitted due to spaces. Figure 7 shows 

that the RMSE and one can so that RMSE decrease monotonically as the number of candidates of particles 

increases. The variance of RMSE also decreases as the number of candidates of particles increases. Figure 8 

presents similar trends, we find that RMSE decreases with increasing candidates of particles, and the variability 

also decreases. Figure 9 represents the average of RMSE for different numbers of candidates of particles based 

on 𝟏𝟎𝟎 simulation runs. This indicates that increasing the number of candidates of particles results in lower 

average of RMSE, and once a certain threshold of candidates of particles is reached. Namely further increase has 

leads undesirable for improvement. These results collectively demonstrate that increasing the number of 

candidates of particles can reduce variability and improve the accuracy of self-localization. However, beyond a 

certain point, the effect of increasing the number of candidates of particles becomes less pronounced. 

 

CONCLUSION 

 

    In this study, we have shown verification result for a grid based FastSLAM for self-localization where multiple 

candidates are maintained, and the determination of estimates is performed in the subsequent steps. The 

verification has been performed using two different environmental maps. The results of each verification using  
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Figure 9. Average RMSE for each validation. 

 

box-and-whisker plots to illustrate the variability has been shown and increasing the number of candidates of 

particles leads to a reduction in the variance of the RMSE and improvement the self-localization accuracy. From 

the above, the estimation error can be reduced by calculating multiple candidates of values. Moreover, the 

effectiveness of increasing the number of candidates of particles has been diminished beyond a certain threshold 

has been presented.  

    For future works, there is room to consider a method of candidate of choice, such as a weighted average of 

particles, and an approach to determine self-localization estimates in cases where multiple candidates are involved. 
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Figure 7. Dispersion of RMSE in 50 

particles(map 1). 

Figure 8. Dispersion of RMSE in 50 

particles(map 2 ). 


