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ABSTRACT: In this paper, we show an efficient feature analysis method of body surface temperature (ST) data 

so as to develop accurate prediction systems for artificial insemination (AI) timing of cattle. In the proposed 

analysis method, by using the fundamental waveform synthesis method based on the Fourier transform, 

approximate waveforms for the target waveform were derived. Additionally, reconstructed waveforms which 

does not correspond to both high frequency noise and circadian rhythm were generated. The two reconstructed 

waveforms derived from the approximate waveforms were used to predict the optimal AI timing and to 

discriminate the normal phase, respectively.  
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INTRODUCTION 
 

It is well known that estrus detection plays a very important role for improving reproductive performance of the 

dairy herd and beef cattle industries. Farmers estimate the optimal artificial insemination (AI) timing, which 

occurs before ovulation, by detecting estrus. For estrus, failure of detection or misdiagnosis leads to missed or 

untimely AI, and these results cause economic losses. The loss for missing out on optimal AI timing becomes 

approximately $18 per a cow per day for milk and $11 per cow per day for feed. Thus, detection of estrus in 

cattle is very important for predicting optimal AI timing. Although estrus detection based on visual observation 

of behavioral signs (i.e. standing events) by specialists, 40% of estrus is missed out [López-Gatius (2012)]. It is 

known that the duration of estrous cycle is 21 days. In the case of farmer with 125 cows, missing 40% of the 

estrus causes the farmer to lose approximately $11,822 per cycle. It is obvious that farmers improving 

reproductive efficiency (i.e. detecting when cattle are in estrus and inseminating them accurately) can reduce 

loss of time and costs. Therefore, various detection methods for estrus/optimal AI timing in cattle have been 

developed [Schweinzer et al. (2019), Sakatani et al. (2016), Nogami et al. (2014)]. The detection methods based 

on monitoring ventral tail base surface temperature (ST) for estrus has also been presented which sensors are 

less expensive for farmers and less stressful for cattle than sensors of vaginal temperature [Miura et al. (2017)]. 

In the work of Miura et al., it has also been shown that ST in pre-ovulatory period shows variations clearly. i.e. 

ST decreases about 2 days before ovulation “trend B”, and it increase about 1 day before ovulation “trend A”. 

Especially, trend A was reported to change ST to a greater degree than trend B. Such variations are occurred by 

hormonal changes in the cattle. Based on these fluctuations caused by estrus, prediction method of optimal AI 

timing by monitoring ST is developed [Matsumoto et al. (2022)].  

From the above discussions, we show an efficient feature analysis method of data (ST) to develop accurate 

prediction systems for AI timing of cattle. In the proposed analysis method, by using the fundamental waveform 

synthesis method based on the Fourier transform, approximate waveforms for the target waveform (ST) are 

derived. Because of this, frequency elements consisting of the target waveform can be obtained. One can easily 

see that frequency elements mean “fundamental” and “harmonic”, and “harmonic (M)” is appropriately selected 
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to generate accurate approximate waveforms. The reconstructed waveforms were calculated by using the 

frequency elements which don’t correspond to the high-frequency noise (M=30) and circadian rhythms (M=20) 

respectively. Moreover, for reconstructed waveform with M=30, scalograms obtained by applying the 

continuous wavelet transform are calculated, and NSIα  (Normalized Spectrum Index with degree α) can be 

generated by using scalograms. Based on NSIα, the peaks related to the effect of estrus can be detected.  

For reconstructed waveform with M=20, discrimination of normal phase was performed by extracting the 

maximum and minimum values. Note that “the normal phase” is defined as the period which does not 

corresponds to ovulation in this study. We see from analysis results for the reconstructed waveform that features 

for variations of ST before ovulation can efficiently captured, i.e. efficient features correspond to ovulation can 

be extracted. In this paper, by using the proposed analysis method, we show analysis results for biological data. 

 

MATERIALS AND METHODS 

 

ST data 

 

Nine female cows (five Holstein Friesian heifers, one Japanese Black heifer, and three Japanese Black cows, 2.7 

± 0.8 years old: mean ±SD) with normal estrous cycles were used in summer (August–September), autumn 

(October–November) and winter (January-–February; three animals per season). A wireless sensor were 

attached to the lower surface of the ventral tail base. Examples of measured ST are shown in Figures 1 and 2. In 

these figures, the horizontal axis indicates the number of days until ovulation [day] and the vertical one indicates 

ST [°C]. The actual day of ovulation is set as 0 [day] and the sampling rate is 120 [s]. The “No.” means to the 

individual identification number. 

 

Fundamental Waveform Synthesis 

 

We apply the fundamental waveform synthesis on Fourier series expansion [Yamaguchi et al. (2008)] to the ST 

data and then approximate waveforms are generated. Now we assume that the preprocessed-waveform can be 

expressed in the form of a Fourier series expansion. It is well known that Fourier series expansion for periodic 

signal 𝑓(𝑡) is given by 

 

 

 
(1) 

 

where T is the fundamental period (i.e. 𝑇−1  is the fundamental frequency), and M is a parameter which 

represents the order of the harmonics. Moreover, 𝑎0, 𝑎𝑛 and 𝑏𝑛 are the Fourier coefficients. In this paper on the 

basis of the Fourier series expansion, we suppose that the approximate waveform 𝑓(t) is described as 

 

 

 
(2) 

 

In (2), 𝛼0, 𝛼𝑛 and 𝛽𝑛  are the Fourier coefficients of the approximate waveform. In this paper, the Fourier 

coefficients of the approximate waveform are searched by using the steepest descent method. The coefficients 

𝛼0, 𝛼𝑛 and 𝛽𝑛are determined by using mean square error (MSE). Note that the stopping condition is MSE <
10−4 .  In this paper, the parameter M in (2) is selected as M = 500. Note that, the sampling interval is 

temporarily set at 0.01[s], i.e., the fundamental frequency is assumed to be 0.005[Hz]. Figure 3 shows the ST 

waveform shown as the blue line and approximate waveform described as red line. 

 

Reconstruction of Approximate Waveform 

 

The approximate waveforms were reconstructed by using only specified frequency components. In this paper, 

we set M as the following two values: 

 

(i) M=30: Reconstructed waveform with components in the frequency band corresponding to the high 

frequency noise removed. 

(ii) M=20: Reconstructed waveform with components in the frequency bands corresponding to 

circadian rhythms (temperature changes in approximately 24-hour cycles due to cattle’s life 

rhythm) removed in addition to the high frequency noise. 
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        Figure 1. Raw Data (No.64 Autumn)                      Figure 2. Raw Data (No.70 Winter) 

 

         
Figure 3. ST and Approximate Waveform                       Figure 4. Approximation Waveform and 

                                                                                                Reconstructed Waveforms(M = 30, 20) for Figure 3 

 

Figure 4 shows the approximate waveform and the reconstructed waveforms with M=30 and M=20 respectively. 

The reconstructed waveform with M=30 shows the characteristics of circadian rhythms. Moreover one can see 

that fluctuations corresponding to noises are suppressed. The reconstructed waveform with M=20 represents 

gradual transitions in which the circadian rhythm has been eliminated. In addition, ST decreased approximately 

3 days before ovulation and increased 1.5 days before ovulation. These changes in the reconstructed waveform 

are similar to the characteristic of ST fluctuations before ovulation shown in the literature [Miura et al. (2017)]. 

Figure 4 shows that the trends A and B before ovulation has been captured. The reconstructed waveforms shown 

in Figure 4 were generated by using the data of the entire ovulation cycle, but when predicting the actual day of 

ovulation, it is necessary to estimate it based on the data received from the sensors in real time. In other words, 

it is necessary to generate reconstructed waveforms sequentially from the data measured from time to time and 

to capture calculating fature parameters related to ovulation. Therefore, an approximate waveforms are 

generated every time one hour's of data has been accumulated. 

 

Prediction of Optimal AI Timing 

 

Suppression of Circadian Rhythm Processing 

 

The reconstructed waveform (M=30) is analyzed by suppressing the circadian rhythm to extract the 

characteristic of emperature fluctuations prior to ovulation. One can easily see that the circadian rhythm may 

interfere with analysis. In order to remove the influence of the circadian rhythm, we suppress the fluctuation of 

circadian rhythm from reconstructed waveform (actual value of reconstructed waveform − mean value of 

reconstructed waveform for the same hour on the previous 2 days and current time). 𝑥⚹(𝑘) is given as: 

 

 
(3) 

where 𝑥(𝑘) denote ST at time k and k is a sample number. Figure 6 shows 𝑥⚹(𝑘) obtained from the waveform 

in Figure 5. 

 

Time Frequency Analysis Methods 

 

The time frequency analysis methods (continuous wavelet transform and NSIα [Matsumoto (2022)]) are adopted 

in order to detect pre-ovulatory ST fluctuation from the preprocessed waveform. Figures 7 and 8 show the 

results of applying the wavelet transform and NSIα to Figure 6, respectively. The scalograms shown in Figure 7 

is output of the wavelet transform and is a three-dimensional graph with time on the horizontal axis, frequency 

on the vertical one, and energy intensity. The energy intensity is shown as color map from blue to red. 

NSIα (Normalized Spectrum Index α) is adopted to convert the scalogram to two dimensional waveform. Note  
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Figure 5. Reconstructed Waveform (M = 30)        Figure 6. After Circadian Rhythm Suppression. 

for Figure 2 

          
               Figure 7. An Example of Scalograms                          Figure 8. An Example of NSIα 

 

that NSIα is considered as center of gravity in scalograms. In this study we set the weighting parameter α=2.0. 

NSIα has been able to capture features for characteristic variation of ST before ovulation. One can see from 

Figure 8 that NSIα takes maximum value at approximately −1[d] and the peak corresponds to trend A. 

 

Peak Detection mehod 

 

The peak detection method is based on the time when the difference between the maximum value of the interval 

of the latest data for one day and the latest data in the reconstructed waveforms generated from time to time is 

greater than the threshold value th = 0.25. In addition, a decreasing trend in the reconstructed waveform at the 

time of peak occurrence in NSIα  gives a criterion. In other words, due to the fact that the reconstructed 

waveform after the rise shows in a decreasing trend after the peak. 

 

Discrimination of Normal Phase 

 

Feature Extraction 

 

Figure 9 represents the reconstructed waveforms which are generated by each time one hour of accumulated 

data. We see from Figure 9 that for the reconstructed waveform (M=20) that the circadian rhythm is suppressed. 

In Figure 9, ST fluctuations tend to be larger than normal before -3 [day], which may be due to the continuous 

occurrences of trend B and trend A. These trends represent fluctuations attributable to the ovulation. Therefore, 

we focused on the transition of the maximum and median values of the extended reconstructed waveforms. The 

maximum and median values of the latest daily interval of the reconstructed waveform are shown in Figure 10. 

The maximum and median values increase from about 2[day] before ovulation with the occurrence of trend A. 

Moreover the maximum and median values for each 8-hour period are searched respectively, and linearly 

interpolated waveform 𝑚𝑎𝑥8(𝑘) and 𝑚𝑒𝑑𝑖𝑎𝑛8(k) are shown in Figure 11. In this study, a status waveform (see 

Figure 12) is derived to visualise the state in which the maximum value and median value tends to increase 

defined as follows: 

 

 

 
(3) 
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Figure 9. Reconstructed Waveform (M=20)             Figure 10. Maximum and Median Values 

                                for Figure 2  

 
Figure 11. 𝑚𝑎𝑥8(𝑘) and 𝑚𝑖𝑛8(k) Waveforms                    Figure 12. Status Waveform 

 

RESULTS AND FINDINGS 
 

In the normal phase discrimination, the time in St(t)=1, was determined as the possible phase of optimal AI 

timing. In other words, the periods between St(t)=0 means the normal phase.  Based on this criterion, following 

algorithm for predicting optimal AI timing is developed: 

 

(i) Calculate the reconstructed waveforms with M=20 and 30 respectively. 

(ii) Derive a status waveform from the reconstructed waveform (M=20). 

(iii) Search for St(t)=1 in status waveform, and if it is not detected, then return to step (i).  

(iv) Perform the detection method of optimal AI timing. In the case that the peak of NSIα was detected, the 

detection time is judged as optimal AI timing. If not, return to step (i). 

Table 1 shows the time of occurrence of the St(t)=1 closest to the peak of NSIα was detected and predicted time 

of optimal AI timing. This is because a large increase was detected due to the occurrence of ST fluctuations 

related to ovulation, allowing discrimination between normal and ovulatory phase (around -2 days). In the No. 

70 Autumn data, the peaks of NSIα were detected at -2.1 and -1.04 [day], but the optimal AI timing could be 

identified as -1.04 [day] by normal phase discrimination. In addition, the detection 1.5 days before ovulation 

also makes it possible to prepare AI in advance. In previous study [Sumiyoshi, Tanaka and Kamomae (2020)] 

significantly higher conception rates have been reported when AI is performed approximately 0-24 [h] before 

ovulation. For multiparous cows, the conception rate was as high as 78.0% in the time range of 6-18 hours prior 

to ovulation. It has also been reported that the conception rate for AI performed 0-24 hours prior to insemination 

was approximately 57.6%, which is higher than the conception rate for all cows (47.0%) [Sumiyoshi, Tanaka 

and Kamomae (2020)]. Based on these results, the optimal insemination phase was set at 0-24 [h] and the 

effective phase at 6-18 [h] in this study. From above discussion, in the case that AI was performed 0.5[day] after 

the detection time, 7 out of 9 data were in the effective phase and 4 data indicated optimal phase of AI. In the 

data where detection failed, it is possible that this was because no significant ST increase was detected. 

Although accurate prediction of the optimal timing of AI was achieved, the time of normal phase discrimination 

varied from -2.66 to -1.50. Such failures are caused by large variations of ST during the normal phase, i.e., and 

individual differences in the occurrence time of pre-ovulatory ST fluctuations.  
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Table 1. Peak Detection Time and Time when St(t)=1 

ID 
64 

autumn 

70 

autumn 

70  

winter 

71 

summer 

3957 

summer 

Time when St(t)=1 [day] -1.66 -1.50 -1.83 -1.95 -1.62 

Peak Detection Time[day] -0.87 -1.04 -1.2 -0.75 -0.45 

ID 
5779 

summer 

5779 

autumn 

5779 

winter 

9213 

winter 

Time when St(t)=1 [day] -1.50 -1.50 -2.50 -2.66 

Peak Detection Time[day] -2.16 -0.95 -0.62 -2.20 

 

CONCLUSION  
 

In this paper, we have proposed analsys methods based on fundamental waveform synthesis method. The two 

reconstructed waveforms derived from the approximate waveforms were used to predict the optimal AI timing 

and to discriminate the normal phase, respectively. In the analysis in prediction of optimal AI timing, 

scalograms based on continuous wavelet transform are firstly generated, and next 𝑵𝑺𝑰𝜶(𝒌) is obtained by using 

scalograms. There are distinctive features (abrupt peaks) in the 𝑵𝑺𝑰𝜶(𝒌). Namely, if characteristics for such 

features can be detected, then it means the time is considered as optimal AI timing. However, these peaks of 

𝑵𝑺𝑰𝜶 could occur 2[day] before ovulation. The short coming of the prediction method of optimal AI timing was 

handled by improving the discrimination method of the normal phase. When both the maximum and median 

values of the reconstructed waveform didn’t show an upward trend, the normal phase was judged was 

determined for the other periods. However, the time of occurrence of the St(t)=1 closest to the peak of 𝑵𝑺𝑰𝜶 

within the period -2.66 to -1.50[day], results in a large variation between individuals. One of future tasks is an 

extension to the prediction system embedding pattern recognition methods. 
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