
Proceedings Paper          DOI: 10.58190/icat.2023.12 

PROCEEDINGS OF 

INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES  

https://proceedings.icatsconf.org/ 

11th International Conference on Advanced Technologies (ICAT'23), Istanbul-Turkiye, August 17-19, 2023. 
  

21 

 

Detection of Fungal Infections from Microscopic 

Fungal Images Using Deep Learning Techniques 
Ilkay CINAR1, Yavuz Selim TASPINAR2 

1Department of Computer Engineering, Selcuk University, Konya, TÜRKİYE 

ilkay.cinar@selcuk.edu.tr, ORCID: 0000-0003-0611-3316 
2Doganhisar Vocational School Selcuk University Konya, TÜRKİYE 

 ytaspinar@selcuk.edu.tr, ORCID: 0000-0002-7278-4241 

 
Abstract— Fungal infections, due to their diverse manifestations 

and varying characteristics, present significant challenges in 

medical diagnosis. This study delves into applying deep-learning 

techniques for detecting fungal infections from microscopic fungal 

images. By harnessing the power of Convolutional Neural 

Networks (CNNs), we propose an approach that employs transfer 

learning to accurately classify different fungal species. The dataset 

comprises microscopic images of various fungal types, and to 

enhance model performance, we utilize data augmentation 

techniques. Furthermore, we aim to boost performance by fine-

tuning the model's layers. Initially starting at 84.38% accuracy, 

our experimental results progressively reached high values of 

95.35% and 97.19%. These results underscore the effectiveness of 

our deep learning approach in precisely identifying and classifying 

fungal infections. This success holds promising potential to aid 

medical professionals in timely and accurate diagnoses. The 

findings presented in this study contribute to ongoing research in 

medical image analysis and drive advancements in the field of 

automated disease detection. 
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I. INTRODUCTION 

Fungal infections represent a formidable global health 

concern, affecting millions of individuals annually across 

diverse age groups and geographical regions. Among the 

different types of fungi, microscopic [1] fungi hold a crucial 

position in the occurrence of superficial fungal infections [2]. 

These infections commonly manifest as dermatological 

conditions, afflicting affected individuals' skin, hair, and nails. 

In the context of healthcare, the timely and precise 

identification of these causative fungi [1] is of utmost 

importance as it not only guides the implementation of 

appropriate therapeutic interventions but also plays a vital role 

in mitigating potential complications and ultimately improving 

patient outcomes [2, 3]. 

Unfortunately, the conventional diagnostic methods 

employed for fungal identification predominantly rely on 

labour-intensive and time-consuming culturing techniques. 

These conventional approaches present certain limitations, 

rendering them less suitable for urgent clinical decision-making 

[4]. As a result, there is a pressing need for innovative and 

efficient diagnostic methodologies to expedite the fungal 

identification process without compromising accuracy. 

In recent years, the realm of medical image analysis has 

experienced a transformative wave of progress with the advent 

of deep learning algorithms [5, 6]. These cutting-edge 

advancements in artificial intelligence have exhibited 

tremendous promise, particularly in the realm of disease 

classification [7]. One notable area where deep learning has 

demonstrated considerable potential is the classification of 

microscopic fungi responsible for superficial infections [1, 3, 

4]. 

In light of these advancements, our study seeks to contribute 

significantly to the field of medical image analysis by 

introducing a ground-breaking resource named DeFungi [8, 9]. 

DeFungi stands as a unique and meticulously curated dataset, 

housing an extensive collection of microscopic fungi images. 

The dataset has been thoughtfully compiled to address the 

specific challenges associated with the classification of 

superficial fungal infections [10]. By providing researchers and 

practitioners with this carefully crafted dataset by Hajati, In this 

study, it’s aimed to pave the way for developing and evaluating 

cutting-edge deep learning models tailored explicitly for 

classifying five distinct classes of superficial fungal infections. 

This research endeavours to harness the transformative 

power of deep learning in the domain of medical image analysis, 

specifically focusing on the classification of microscopic fungi 

responsible for superficial infections [2]. By sourcing the 

DeFungi dataset and exploring the potential of deep learning 

models, the study aims to contribute significantly to the 

improvement of diagnostic workflows, ultimately enhancing 

patient outcomes and elevating the standard of care in the 

management of fungal infections worldwide. 

The motivation behind this research lies in addressing the 

need for an efficient, reliable, and automated method to classify 

microscopic fungi [11] responsible for superficial infections. 
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Current diagnostic methods, while effective, often demand 

considerable time and specialized expertise. The development 

of a deep learning model, specifically VGG16, to tackle this 

classification problem, presents a significant step forward in 

expediting the diagnostic process and improving patient care. 

II. RELATED WORKS  

The integration of deep learning techniques in medical 

image analysis has witnessed a paradigm shift in recent years. 

Researchers and healthcare practitioners have leveraged the 

power of deep learning algorithms to address various 

challenges, including disease detection, segmentation, and 

classification.  

In recent years, there has been a growing interest in utilizing 

deep learning techniques for fungal classification, particularly 

in the context of microscopic fungi. Researchers have 

demonstrated the effectiveness of CNN architectures in 

accurately distinguishing between different fungal species, 

providing valuable insights into the morphological variations 

among them [5]. These studies have often utilized datasets that 

include both macroscopic and microscopic fungal images, 

showcasing the applicability of deep learning in diverse fungal 

identification scenarios [3]. 

This study is a valuable addition to the field of deep learning 

and medical image analysis, especially for fungal classification. 

By sourcing the DeFungi dataset. Utilizing the VGG16 

architecture, we aim to enhance fungal identification with 

improved accuracy and efficiency. 

Sopo et al., in their study, explored early-stage fungal 

infection classification using two deep-learning approaches and 

three convolutional neural network models, contrasting with 

existing research focused on late-stage mycological diagnostics 

[9]. The dataset used in this study has undergone pre-processing, 

with automated algorithms cropping all images to the region of 

interest. It is associated with computer science and is suitable 

for image classification tasks, specifically aimed at developing 

a machine-learning algorithm for detecting and classifying 

fungi images [9].  

This research uses deep learning to classify five types of 

fungi. The dataset was provided by a Colombian mycological 

laboratory, manually labeled into five classes, and cropped with 

automated routines. Two deep learning approaches and three 

convolutional neural network models (VGG16, Inception V3, 

and ResNet50) were utilized, achieving notable accuracy. 

Inception V3 achieved 73.2% accuracy when trained from 

scratch, while VGG16 reported 85.04% accuracy using transfer 

learning with the ImageNet dataset [9].  

Several modern studies have delved into the application of 

neural networks for the diagnosis of fungal species through 

microscopic imaging. For instance, Zielinski et al., employed 

deep neural networks and the bag-of-words method to classify 

microscopic fungal images, accelerating species identification 

and reducing costly tests. The approach shortens identification 

time by 2-3 days and lowers costs, outperforming traditional 

architectures and promising quicker treatment decisions [12], 

which achieved a remarkable 93% accuracy in identifying 

various yeast fungi, encompassing nine Candida types. 

Similarly, Hao et al., introduced an innovative approach for the 

automatic identification of fungi in microscopic leucorrhea 

images, utilizing a combination of convolutional neural 

networks (CNN) and morphological techniques. This strategy 

attains an impressive 93.26% accuracy in detecting fungi, 

outperforming standalone CNN or morphological methods. 

Through the integration of image segmentation, CNN-based 

recognition, and morphological classification, this method 

enhances the identification of pathogenic fungi, particularly 

Candida albicans [13]. Cuervo et al., presented a software tool 

using image processing and neural networks to automatically 

identify Fusarium species from microscopic samples. Fusarium 

fungi can pose health risks to humans, animals, and plants. The 

tool processes images of Fusarium strains and achieved 69.51% 

identification accuracy [14]. Furthermore, Tahir et al., 

employed computer vision techniques to detect and classify 

fungi. The study introduces a novel dataset containing 40,800 

labeled images of diverse fungal spores, captured using an 

optical sensor system and various light sources. A CNN-based 

approach achieves an impressive 94.8% accuracy in identifying 

different fungus types. The research contributes valuable 

insights to the field of fungus detection and classification, 

focusing specifically on spores rather than hyphae [15]. 

Rahman et al., utilized deep CNNs for categorizing harmful 

fungi based on microscopic images. The DenseNet CNN model 

attains 65.35% accuracy for the foremost prediction and 75.19% 

for the top 3 predictions within 89 genera. Performance sees 

enhancement (>80%) when excluding uncommon genera and 

incorporating data augmentation. Certain fungal categories 

exhibit a perfect 100% accuracy. This method enhances 

diagnostic precision and shortens identification time for 

filamentous fungi [16]. Kristensen et al., investigated 

automated classification of microscopic Gram stain images for 

bacterial samples. Two algorithms (Casual Probabilistic 

Network (CPN) and Random Forest (RF) classifier) were 

developed and tested, achieving accuracy rates of 99% and 80% 

respectively. Notably, both algorithms performed well in 

differentiating between Gram-negative and Gram-positive 

samples. These results indicate the potential of automated 

algorithms to enhance the accuracy and efficiency of bacterial 

sample classification through image analysis [2]. 

The related work in this domain highlights the vast potential 

of deep learning in medical image analysis and fungal 

classification. As we move forward with our research, we aim 

to contribute to the collective understanding of deep learning's 

capabilities in dermatological diagnostics, specifically in the 

context of superficial fungal infections, ultimately advancing 

the field and improving patient care. 

III. MATERIAL AND METHODS 

In this section, details regarding the dataset, convolutional 

neural networks, transfer learning and fine tuning, and the 

experimental setup are elucidated. The graphical illustration of 

the study can be found in Fig. 1. 
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Fig. 1  Graphical illustration of the study 

 

A. Dataset  Details 

The data used in the study was obtained from 'UCI Machine 

Learning Repository' [8]. The images in the dataset are stated 

to be taken from superficial fungal infections caused by yeasts, 

molds or dermatophyte fungi. In addition, it was stated that the 

images were manually divided into 5 classes and edited with 

the help of the subject expert assistance. The dataset consists of 

9114 images in 5 different categories. Detailed information 

about the dataset is given in Table I. Examples of images in the 

dataset are given in Fig. 2. 

 

TABLE I 

DETAILED INFORMATION ABOUT THE DATASET 

Category Number of Images 

H1 4404 

H2 2334 

H3 819 

H5 818 

H6 739 

Total 9114 

 

 

Fig. 2  Examples of images in the dataset 

 

B. Data Augmentation 

Data augmentation was performed to balance the number of 

images of the classes in the existing dataset. For data 

augmentation, images were subjected to a series of operations 

such as horizontal, vertical, "+" and "-" 45 degree rotation. 

After the data augmentation, the total number of images 

reached 21,691. Detailed information about the data set after 

data augmentation is given in Table II, and examples of data 

augmentation are given in Fig. 3. 

 

TABLE II 

DETAILED INFORMATION ABOUT THE DATA SET AFTER DATA AUGMENTATION 

Category 
Number of Images After Data 

Augmentation 

H1 4404 

H2 4668 

H3 4095 

H5 4090 

H6 4434 

Total 21,691 
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Fig. 3  Examples of data augmentation operations 

 

C. Convolutional Neural Networks (CNN) 

In the landscape of modern data analysis demands, 

Convolutional Neural Networks (CNNs) stand as a 

revolutionary leap in computer vision. This architecture 

employs intricate mathematical operations to hierarchically 

extract and comprehend features within data. This specialized 

breed of artificial neural networks has achieved remarkable 

feats, especially in domains like image recognition, object 

detection, and classification. What fuels the prowess of CNNs 

is their inherent ability to automatically discern local patterns 

in data, rendering them invaluable in tasks such as texture 

analysis, facial recognition, medical imaging, and more. 

Amidst the existing body of literature, the adaptability and 

learning capacity of CNNs have transformed them into an 

exhilarating realm of exploration across a wide spectrum of 

applications [17-19]. 

D. VGG16 Model  

This model stands as a pivotal convolutional neural network 

model in the realm of deep learning. It takes its name from the 

"Visual Geometry Group," a research collective, and was 

developed in 2014. Characterized by its profoundly layered 

architecture, VGG16 is distinguished for its series of 

convolutional and densely connected layers, often regarded as 

pioneering in the deep learning domain. This structure has 

particularly excelled in image classification tasks, yielding 

impressive results. Additionally, the VGG16 model has played 

a significant role in areas like transfer learning and feature 

extraction, showcasing its learning prowess. The VGG16 

model is a convolutional neural network structured with 3x3 

filters of various depths and sizes. Comprising a total of 16 

layers, these layers stand out for their unique capabilities. In the 

initial layers, low-level features like edges and corners are 

detected. As we progress, these features evolve into higher-

level features, encompassing textures and patterns. As the layer 

count increases, specialized features are unearthed to 

comprehend abstract concepts. In the final layers, features 

crucial for ultimate classification are identified. These layers 

cater to a wide spectrum of applications, from conventional 

computer vision problems to intricate tasks. Hence, the VGG16 

model shines as an effective instrument in the realm of visual 

processing, primarily owing to its distinctive layer architecture 

[20, 21]. 

 

E. Transfer Learning and Fine Tuning 

Transfer learning involves applying features learned from a 

pre-trained model to a new task or dataset. This approach often 

utilizes the lower layers of the model, which capture general 

features, while customizing the upper layers to match the 

requirements of the new task or dataset. Transfer learning is 

frequently used to mitigate overfitting and expedite training, 

particularly on smaller datasets [22, 23]. 
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Fig. 4  Pre-trained VGG16 model 

The pre-trained VGG16 model used in the study is shown in 

Fig. 4. Layers other than fc8 and later, the fully connected last 

layer of the VGG16 model, have been preserved. In the fully 

connected layer, the OutputSize value is set to 5, which is the 

number of classes in the dataset. WeightLearnRateFactor and 

BiasLearnRateFactor value updated to 10. 

Fine-tuning refers to adjusting specific layers of a pre-

trained model to better suit a new task or dataset. These 

adjustments are usually focused on layers that are relevant to 

the new task. While the lower layers of the pre-trained model 

may capture more general features, the upper layers can be fine-

tuned to capture more specific features. This allows the model 

to retain its learned foundational features while adapting to new 

data [22, 23]. 

The fine-tuned VGG16 model used in the study is shown in 

Fig. 5. All activation layers used in the pre-trained VGG16 

model have been changed from ReLu to Leaky ReLu. The scale 

value of the Leaky ReLu layer is set to 0.01. In the fully 

connected layer, the OutputSize, WeightLearnRateFactor and 

BiasLearnRateFactor values are fixed. 

 

 

 

 

 

 

Fig. 5  Fine-tuned VGG16 model 

 

The purpose of using the Leaky ReLU activation function 

instead of the ReLU activation function is primarily to address 

certain issues. The ReLU activation function generates an 

output of zero for negative input values, which can sometimes 

lead to the "dead neurons" problem. This means that if a neuron 

is influenced by negative weights during training, it may 

become inactive and subsequently reduce the model's learning 

capacity. Leaky ReLU mitigates this issue by providing a small 

gradient for negative values, allowing neurons to remain active 

[24, 25]. 

Moreover, Leaky ReLU is believed to aid in handling 

negative values more effectively, which can help prevent 

gradient problems in certain scenarios. Therefore, it is thought 

that Leaky ReLU can promote more stable learning in the 

model, potentially resulting in improved outcomes [24, 25]. 

 

F. Experimental Setup 

Considering factors such as the training of the models 

employed in the study, the hardware utilized, the dataset used, 

and the requirements of the model, the training was conducted 

using the training options specified in Table III. 

 

TABLE III 

TRAINING OPTIONS OF MODELS 
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IV. EXPERIMENTAL RESULTS 

In the study, primarily the training processes were carried 

out using the pre-trained VGG16 model with the raw data set. 

The training, validation and loss graphs obtained from here are 

given in Fig. 6. 
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Fig. 6  Training, validation and loss graphs of the pre-trained VGG16 model with the raw dataset 

 

When examining Fig. 6, a distinct separation between the 

training and validation curves becomes particularly evident, 

especially post the 4th epoch. This divergence can be attributed 

to the varying distributions of image counts within the raw 

dataset. It is plausible to suggest that this disparity in 

distribution plays a role in this phenomenon. Looking at the 

results, after 8 epochs and 5296 iterations, an accuracy of 84.38% 

and a loss value of 0.63 were achieved. 

Based on these results, data augmentation procedures were 

performed on the raw dataset to align the distributions of image 

counts, and training was subsequently conducted using the pre-

trained VGG16 model once again. The resulting training, 

validation, and loss graphs are illustrated in Fig. 7. 

 

 

Fig. 7  Training, validation and loss graphs of pre-trained VGG16 model with data augmented dataset 

 

Upon examination of Fig. 7, training concludes after 8 

epochs and 12,616 iterations, yielding a classification accuracy 

of 95.35% and a loss value of 0.15.  

Following this step, the VGG16 model was further fine-

tuned by incorporating Leaky ReLU activation functions 

instead of ReLU, and training was carried out using the 

augmented dataset. The resulting training, validation, and loss 

graphs are depicted in Fig. 8. 
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Fig. 8  Training, validation and loss graphs of fine-tuned VGG16 model with data augmented dataset 

 

Upon examining Fig. 8, training concludes after 8 epochs 

and 12,616 iterations, yielding a classification accuracy of 

97.19% and an exceptionally low loss value of 0.08. 

 

V. CONCLUSIONS 

In pursuit of efficient, reliable, rapid, and consistent 

detection of fungal infections through microscopic images, a 

series of experiments were conducted in this study, building 

upon the foundation of the VGG16 model. These results are 

presented in Table IV.  

 

TABLE IV 

RESULTS OF CLASSIFICATION 

Dataset Model Accuracy (%) Loss 

Raw Dataset 
Pre-trained 

VGG16 
84.38 0.63 

Augmented Dataset 
Pre-trained 

VGG16 
95.35 0.15 

Augmented Dataset 

Fine-tuned 

Pre-trained 

VGG16 

97.19 0.08 

 

Initially, training was performed using the raw dataset 

alongside a pre-trained VGG16 model. Observing the results, it 

was deduced that the imbalanced image distributions within the 

dataset negatively impacted the outcomes. To address this, data 

augmentation was undertaken to balance image counts, 

followed by training using the augmented dataset and the pre-

trained VGG16 model. The results depicted in Table IV 

displayed an elevated classification accuracy, climbing from 

84.38% to 95.35%, highlighting the influence of irregular data 

distributions on classification success. 

 

In the final phase, fine-tunning was achieved by replacing 

the ReLU activation function, used in the pre-trained VGG16 

model, with Leaky ReLU. This alteration aimed to mitigate the 

potential issues associated with ReLU's zeroing of negative 

input values, a phenomenon often termed "dead neurons," 

which could reduce the model's learning capacity. Upon 

examining the outcomes also presented in Table IV, it becomes 

evident that this alteration held significant promise. The 

accuracy values demonstrated a rise from 95.35% to 97.19%, 

while loss values diminished from 0.15 to 0.08. 

Taking an overarching view of the study, it can be 

confidently asserted that the detection of fungal infections has 

been achieved with resounding success. 
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