
Proceedings Paper DOI: 10.58190/icat.2023.51

PROCEEDINGS OF

INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES

https://proceedings.icatsconf.org/

11th International Conference on Advanced Technologies (ICAT'23), Istanbul-Turkiye, August 17-19, 2023.

211

An Investigation of the Usage of Dynamic Time

Warping in String Similarity Estimation
Mehmet Ali Özer 1, Emre Kaplan1, Can Özbey1, Meltem Çetiner1, Ekin Can Erkuş1

1 Intelligent Application Department DC, Huawei Technologies Turkey R&D Center Istanbul, Turkey

mehmet.ali.ozer@huawei.com, ORCID: 0000-0003-2254-0254

emre.kaplan@huawei.com, ORCID: 0009-0008-5445-3079

can.ozbey1@huawei.com, ORCID: 0009-0005-8432-9413

meltem.cetiner1@huawei.com, ORCID: 0000-0001-5026-0642

ekin.can.erkus2@huawei.com, ORCID: 0000-0002-2445-5929

Abstract— String similarity estimation is important in many

fields, including natural language processing, information

retrieval, and data mining. Dynamic Time Warping (DTW) has

emerged as a widely used technique for measuring sequence

similarity, effectively accommodating variations in length and

temporal distortions. This paper presents an examination of the

use of DTW in string similarity estimation. We delve into the

adoption of DTW in string similarity estimation in various

contexts, such as approximate string matching and spelling

correction. We investigate DTW’s strengths and limitations

through empirical analysis, particularly in capturing complex

patterns and variations within strings, while taking into account

factors such as adaptability and robustness. Furthermore, we

discuss the impact of various traditional similarity metrics in

comparison with DTW based on their evaluation on two different

experimental settings. The findings of this study provide

important insights into the effectiveness and challenges of using

DTW in string similarity estimation. This work may open up

alternative ways for the development of more adaptive string

similarity estimation techniques through the use of DTW.

Keywords— string similarity, dynamic time warping, similarity

estimation, distance measures, approximate string matching

I. INTRODUCTION

String similarity estimation plays important role in many

fields such as natural language processing, information

retrieval, text classification, automatic question-answering,

data mining, bioinformatics [1][2]. Text-based studies have at

least two essential steps which are to represent the text and to

measure the representations to be able to compare. Traditional

techniques have focused on common words for measuring

similarity between documents [1]. Cosine similarity applied on

TF-IDF representations [3] as well as set intersection measures,

e.g., Jaccard similarity, which can also be applied on keywords

[4], are particularly effective when texts are more likely to have

common words. However, in some cases, the number of shared

words among documents happens to be limited, and thus a

latent representation is needed to capture similarity between

documents. For that matter, vector space models [5], e.g.,

Latent Semantic Analysis (LSA) [6][7], doc2vec [8], GloVe [9],

BERT [10], etc., stand out since they are able to encode

semantic information in a reduced vector space. In this respect,

graph-based models are also used as they may capture latent

relationships between documents [11], [12].

Similarity measures are not only applied on documents, but

also on keywords especially in information retrieval [13], [14].

Depending on the purpose, there exist many different string

similarity estimation algorithms [15]. In this paper, we aim to

adapt Dynamic Time Warping (DTW) to the problem of

measuring structural similarity between strings.

Conventionally, DTW is mostly used for sequence alignment

in specific domains such as speech recognition [16],

bioinformatics [17], time series analysis [18], etc., and to our

knowledge, it has been relatively unexplored as a string

similarity measure for keywords to be compatible with popular

metrics. In [19], a sentence-level DTW is applied to measure

similarity between texts, which concerns with the parts of

speech and word order. Likewise in [20], the authors

considered the smallest unit in sequences to be words, and thus

compute distance between documents. Our motivation is to

adopt DTW such that it will be possible to calculate a degree of

similarity between two keywords in a similar manner to

common string similarity metrics. In the rest of the paper, we

first explain how to transform DTW to a similarity measure by

constructing a character-level binary cost matrix, then we

briefly describe some common string similarity metrics to

compare with our method, and lastly we conduct experiments

on two different dataset to comparatively evaluate the proposed

method.

https://doi.org/10.58190/icat.2023.12
https://proceedings.icatsconf.org/

International Conference on Advanced Technologies (ICAT’23)

212

II. METHODS

A. Dynamic Time Warping (DTW)

DTW aims to find an optimal alignment between two

independent sequences X = (x1, x2, ..., xN) and Y = (y1, y2, ..., yM)

of length N ∈ N and M ∈ N respectively, such that the sum of

distances between the aligned points will be a global minimum

[21]. More formally, its objective can be formulated as follows:

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛 (∑ 𝑑(𝑋𝑖 , 𝑌𝑖)

(𝑖,𝑗)∈𝐴

)

(1)

Here, A refers to the set of all possible temporal paths that

can be constructed between X and Y. The distance function d(X,

Y) yields the distance between any given pair of elements from

the two sequences. The optimal path with the minimum total

distance is found by dynamic programming.

B. Binary Encoding

DTW requires that a cost matrix be constructed from a

given pair of strings.Here, we adopt the most basic scheme

where a binary encoding is used to create a pairwise distance

matrix between the single characters in the two strings. If two

characters are the same, the distance is 0; otherwise the distance

simply becomes 1. A distance matrix constructed by the words

“proof” and “profe” is given as an example in Table I.

TABLE I

BINARY DISTANCE MATRIX

 p r o o f
p 0 1 1 1 1
r 1 0 1 1 1
o 1 1 0 0 1
f 1 1 1 1 0
e 1 1 1 1 1

The pairwise distance matrix can be used to infer the

optimal DTW path. This path is a sequence of points that

represents the optimal alignment with the minimum total cost

between the two strings. The green coloured cells in Table II

corresponds to the optimal path and the minimum total distance

associated with the path is calculated as 2.

TABLE II

OPTIMAL DTW PATH

 w i t h o u t
w 0 1 1 1 1 1 1
h 1 1 1 0 1 1 1
i 1 0 1 1 1 1 1
t 1 1 0 1 1 1 0
o 1 1 1 1 0 1 1
u 1 1 1 1 1 0 1
t 1 1 0 1 1 1 0

C. Distance Normalization

If the given two strings are of different lengths, the minimum

cost may not come out as an accurate measure of

dissimilarity. For this reason, we optionally apply

normalization in a similar manner to the Longest Common

Substring (LCS) algorithm in order to obtain a standardized

measure of distance. In this respect, we apply two different

normalization schemes:

MaxLen Normalization: In MaxLen normalization process,

the minimum total distance is divided by the longest length

of the given strings.

PathLen Normalization: In PathLen normalization, the

minimum total distance is divided by the total number of

steps in the DTW path.

STRING SIMILARITY MEASURES

In this section, we describe different types of string

similarity algorithms that we used in our experiments for

comparison with DTW. Some of these algorithms require

tokens for the computation, so we used character-based

tokenization with different q values.

Character-based tokenization is a simple and straightforward

way of tokenizing strings. It simply splits the string into

individual characters, or pairs of characters if q is greater

than 1. For example, tokens of the word “similar” with q = 1

are [s, i, m, i, l, a, r] and tokens with q = 2 are [si, im, mi, il,

la, ar]. We applied at most up to q = 3 for the intersection-

based algorithms.

A. Longest Common Substring

The Longest Common Substring (LCS) [22] is the longest

consecutive sequence of two or more texts. LCS can be

used for a variety of tasks, including plagiarism detection

[23] and data deduplication [24]. The normalised similarity

between two strings is calculated by dividing the length of

the common string by the length of the longest among the

texts. This gives a measure of how similar the texts are.

B. Eudex

Eudex [25] is a phonetic hashing algorithm that computes

the Hamming distance between two texts based on their

phonetic mapping. The algorithm uses four tables created

according to the International Phonetic Alphabet (IPA) to

extract encodings. Two of the tables are used for ASCII

and C1 (Latin Supplement) characters in the first position

of the word, and the other two tables are used for the rest of

the characters [26]. Each character is represented by 8-bits,

and those that share more phonetic resemblance will have

lower Hamming distances. The final similarity is calculated

International Conference on Advanced Technologies (ICAT’23)

213

by measuring the Hamming distances of all the characters

by the prefixes of a given pair of strings.

C. Levenshtein Distance

The Levenshtein distance (Edit distance) [27] is a measure

of a structural similarity between two strings, commonly

used in natural language processing [28] and information

retrieval tasks [13]. It is defined as the minimum number of

editing operations required to transform string a into string b.

The original editing operations, which include substitution,

insertion, and deletion, were later extended to incorporate

transpositions as well.

D. Jaccard

The Jaccard similarity index is calculated as the ratio of

the common elements between two sets to the total number

of elements in the union set. A high Jaccard index indicates

a high degree of similarity. Jaccard index is calculated

according to the formula:

𝐽(𝑋, 𝑌) =

|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|

(2)

where x and y are two sets. |X∩Y| is the number of elements

common to both sets, while |X ∪ Y| is the total number of
elements in the union of the two sets.

E. Ample

Ample is the measure of text similarity that calculates the

similarity between two strings using set intersection, similar to

the Jaccard similarity coefficient. The Ample formula is as

follows:

𝐴(𝑥, 𝑦) = |

𝑏

𝑎 + 𝑏
−

𝑐

𝑐 + 𝑑
|

(3)

Let us consider two sets x and y. We compute b as the size

of the intersection of the two, i.e., b = |x ∩ y|, and subsequently,

a = |x| − b, c = |y| − b, and d = p − |x ∪ y| where p is calculated

by:

 𝑝 = |Σ|𝑞 (4)

Here, |Σ| refers to the number of distinct symbols of the

alphabet in use, and q denotes the tokenization parameter

explained previously. For example, with q = 2, p is calculated

as 282 with the start token ($) and end token (#) added for

values of q greater than or equal to 2. However, for q = 1, these

symbols are not required. In this case, the number of possible

tokens is calculated as 261, which is the length of the standard

English alphabet.

The first term in the equation stands for a degree of similarity,

and the second ratio that of dissimilarity. As a result, a higher

Ample score indicates a higher similarity.

F. Jaro-Winkler

Jaro-Winkler [29] is an algorithm that computes similarity

over edit distance between two texts. It is a variant of Jaro [30]

and uses prefix size p and prefix length l in addition to Jaro

similarity. The formula of the Jaro-Winkler similarity is

 𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 ∗ 𝑝 ∗ (1 − 𝑠𝑖𝑚𝑗) (5)

where

• 𝑠𝑖𝑚𝑗 is the Jaro similarity

• p is a constant scaling factor

• l is the length of the common prefix at the beginning of the

string.

In this paper we used the p value of 0.1 which is the default

value. The p value should not exceed 0.25, otherwise the

similarity may become greater than 1.0.

The Jaro similarity formula is calculated as follows:

𝑠𝑖𝑚𝑗 =

1

3
(
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
)

(6)

where

• s1 and s2 is the two strings being compared

• m is the number of shared characters

• t is the number of transpositions

• |s1| and |s2| are the lengths of the strings s1 and s2,

respectively.

III. EXPERIMENTAL RESULTS

A. Datasets

1) Titler: One of the datasets we used in this study is the

Titler [31] dataset. Titler is a dataset that contains links of some

websites and titles related to these websites annotated by

human assessors. Some examples of link/title pairs are given in

Table III.

TABLE III

TITLER DATASET

Link Title

http://www.thefox.co.nz/ The Fox

http://fourstarpizza.ie/ Four Star Pizza

http://chinesecricketclub.com/ Chinese Cricket Club

http://www.themezegrill.com/ Meze Grill

http://www.brazenhead.com/ The Brazen Head

http://www.sodopizza.co.uk/ Sodo Pizza Caf

We created 4 different scenarios for the titles in the

data. These cases are:

http://www.thefox.co.nz/
http://fourstarpizza.ie/
http://chinesecricketclub.com/
http://www.themezegrill.com/
http://www.brazenhead.com/
http://www.sodopizza.co.uk/

International Conference on Advanced Technologies (ICAT’23)

214

• Case1 - Lowercased

• Case2 - Lowercased, Removed vowels

• Case3 - Lowercased, Removed vowels and whitespaces

• Case4 - Lowercased, Removed whitespaces

TABLE IV

CASES FOR TITLER DATA

Case1 Case2 Case3 Case4
the apollo th pll thpll theapollo

aqua dining aq dnng aqdnng aquadining
manta mnt mnt manta

manta
restaurant

mnt rstrnt mntrstrnt mantarestauran
t piato pt pt piato

piato restaurant pt rstrnt ptrstrnt piatorestaurant

We illustrate how titles are transformed for each case

through some examples as shown in Table IV. Note that

we exclude leading vowels in vowel removal process.

Since the title mostly happens to be relevant to the

information contained in the root of the URL, we construct

two distinct collections of ground-truth items, namely, URL

and Root URL. As shown by the following examples, the

protocol information and the subdomain (www) are removed

in both cases, while the second case only retains the root.

• URL = coffee-express.com.au

• Root URL = coffee-express

Considering all of the cases mentioned above, we will conduct

a total of 8 different experiments to compare string similarity

measures.

2) TOEFL: We used the TOEFL-Spell Corpus dataset based

on the ETS Corpus of Non-Native Written English [32]. It

contains spelling errors made by more than 6000 non-native

speakers, but in this study, we have deduplicated the same

misspellings to ensure that the same misspelled word does not

match more than one correct word. After singularizing the

data, we obtained 4056 misspellings and correct word

matches. Some examples are given in Table V.

TABLE V

TOEFL DATA

Misspelling Correction
writi writing

beacuse because
enviroment environment
suceesfull successful
bussiness business
succesful successful
comfront confront

B. Setup

In our experiments, we consider the given link/title pairs in

the Titler dataset to be the ground-truth. Then, after extracting

all possible link/title pairs in the data, we compute all pairwise

similarity scores using different approaches and take the

highest as a prediction for each title. We then compare these

predictions with the true labels and calculate an accuracy score

for evaluation.

The Titler data contained some titles that are linked to

same URLs. To improve the quality of our experiments, we

separated these titles into their individual components before

extracting the possible link/title pairs as illustrated below.

Link Title

http://www.theapollo.com.au/ The Apollo — The Apollo
Restaurant

Link Title

http://www.theapollo.com.au/ The Apollo
http://www.theapollo.com.au/ The Apollo Restaurant

As for the TOEFL data, we first extract all possible

misspelling/correction pairs and compute their pairwise sim-

ilarities by each approach. Then, to predict correction for each

misspelling, we take the highest among the similarity scores as

shown in Table VI for the Jaro-Winkler metric, in the same way

as performed for the Titler dataset.

TABLE VI

JARO-WINKLER TOEFL SCORES

Misspelling Correction Jaro-Winkler (q=1)
writi writing 0.942857
writi within 0.840000
writi citizen 0.676190
writi erratic 0.676190

...
beacuse because 0.961905
beacuse beauties 0.869444
beacuse Because 0.849206
beacuse became 0.826032

...
enviroment environment 0.961818
enviroment environmental 0.933846
enviroment environmentally 0.913333
enviroment enjoyment 0.860741

C. Results

Table VII summarizes the comparative accuracy results

between all models for both the Titler and the TOEFL

datasets. For Titler data, we observe that Jaro-Winkler out-

performs the other models in all cases, regardless of the

q value. The models whose performance were closest to

that of Jaro-Winkler turned out to be other set intersection-

based algorithms, i.e., Ample and Jaccard, particularly for

Case1 and Case4. It is notable that Jaro-Winkler algorithm

is much more resistant to vowel removal than the other two.

Furthermore, the normalized DTW and Levenshtein metrics

were also found to be more robust to character removals than

Ample, Jaccard, Eudex and LCS.

http://www.theapollo.com.au/
http://www.theapollo.com.au/
http://www.theapollo.com.au/

International Conference on Advanced Technologies (ICAT’23)

215

TABLE VII

SUMMARY OF RESULTS

Model
Titler

Toefl Url Root Url
Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4

LCS 0.56961 0.10103 0.15752 0.79157 0.56802 0.09706 0.16309 0.77566 0.47584
Eudex 0.65473 0.10899 0.10899 0.65473 0.68417 0.10581 0.10581 0.68417 0.44625

Levenshtein 0.70247 0.57518 0.60700 0.71758 0.71201 0.58075 0.60382 0.73111 0.87303
Ample (q=1) 0.00159 0.00080 0.00000 0.00557 0.59029 0.19411 0.30788 0.64757 0.76849
Ample (q=2) 0.80748 0.41209 0.48687 0.81543 0.79475 0.28719 0.35640 0.80907 0.86021
Ample (q=3) 0.82657 0.19173 0.26730 0.84885 0.79554 0.13126 0.22673 0.83134 0.86243

Jaccard (q=1) 0.30469 0.20764 0.19014 0.29674 0.47494 0.34288 0.31981 0.46698 0.56164
Jaccard (q=2) 0.79952 0.35163 0.41925 0.81464 0.81225 0.35084 0.41607 0.82339 0.74482
Jaccard (q=3) 0.82339 0.13683 0.21639 0.83850 0.81941 0.13126 0.21957 0.83532 0.61243

Jaro-Winkler (q=1) 0.79395 0.72713 0.72633 0.79952 0.82657 0.82657 0.72554 0.82737 0.87327
Jaro-Winkler (q=2) 0.85680 0.54813 0.59666 0.86158 0.84964 0.84964 0.57916 0.85998 0.86760
Jaro-Winkler (q=3) 0.85123 0.25298 0.34924 0.86158 0.83134 0.83134 0.35879 0.85362 0.86119

DTW 0.54336 0.11138 0.10263 0.56006 0.70565 0.70565 0.39300 0.71281 0.94412
DTW (MaxLen Norm) 0.70883 0.52983 0.55290 0.71758 0.73111 0.73111 0.59029 0.73986 0.90829
DTW (PathLen Norm) 0.71042 0.52824 0.54574 0.70644 0.73270 0.73270 0.60064 0.73588 0.90312

For the URL case in the Titler dataset, the Ample model

with q = 1 seems to perform poorly. In the URL case,

unlike the Root URL case, some links are very long, and

consequently, the token count of these links are quite high

including numbers and some punctuation. This causes the

value of d in the expression of A(x, y) to be negative,

because p is calculated as 26 for q = 1. If we set d = 0 and

continue the process as such, the similarity score between

two strings becomes much higher than it should be leading

to incorrect predictions. It should be noted that this situation

only occurs for Ample (q = 1) in the URL case.

For the TOEFL data, we can observe that DTW outper-

forms all the other approaches with or without normalization.

In contrast to the Titler dataset, normalization seems to

reduce the performance of DTW. This is possibly due to the

fact that the lengths of misspellings and target correct forms

do not as significantly differ from each other as in the Titler

dataset. Overall, the DTW-based string similarity metric has

been found much more effective in a spelling correction task

rather than partial string matching.

IV. CONCLUSION

In this study, we have developed a method for measuring

string similarity using DTW. In this respect, we have simply

applied a binary cost function, which have been found

effective particularly in the spelling correction task through a

series of experiments with several traditional string similarity

metrics. The proposed method can also be preferred for its

robustness to non-systematic deletion/insertion of characters

as well as for its parameter-free nature in contrast to set

intersection algorithms. While our method uses the binary

encoding between strings to compute the DTW distance, it

can be easily extended such that distance matrix of the input

strings are constructed via a weighted scheme depending on

the task. This aspect makes the proposed method suitable for

future improvements.

REFERENCES

[1] M. Yu, G. Li, D. Deng, and J. Feng, “String similarity search and join: a
survey,” Frontiers of Computer Science, vol. 10, pp. 399–417, 2016.

[2] V. Agoston, L. Kajan, O. Carugo, Z. Hegedus, K. Vlahovicek, and S.

Pongor, “Concepts of similarity in bioinformatics,” nato science series
sub series i life and behavioural sciences, vol. 368, p. 11, 2005.

[3] P. Achananuparp, X. Hu, and X. Shen, “The evaluation of sentence

similarity measures,” in Data Warehousing and Knowledge Discovery:
10th International Conference, DaWaK 2008 Turin, Italy, September 2-

5, 2008 Proceedings 10. Springer, 2008, pp. 305–316.

[4] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Us- ing

of jaccard coefficient for keywords similarity,” in Proceedings of the

international multiconference of engineers and computer scientists, vol.

1, no. 6, 2013, pp. 380–384.
[5] O. Shahmirzadi, A. Lugowski, and K. Younge, “Text similarity in vector

space models: a comparative study,” in 2019 18th IEEE inter- national
conference on machine learning and applications (ICMLA). IEEE, 2019,

pp. 659–666.

[6] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of

knowledge.” Psychological review, vol. 104, no. 2, p. 211, 1997.

[7] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,

1998.

[8] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,

2014, pp. 1188–1196.

[9] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.

1532–1543.
[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.
[11] K. Lund and C. Burgess, “Producing high-dimensional semantic spaces

from lexical co-occurrence,” Behavior research methods, in- struments,

& computers, vol. 28, no. 2, pp. 203–208, 1996.
[12] C. Paul, A. Rettinger, A. Mogadala, C. A. Knoblock, and P. Szekely,

“Efficient graph-based document similarity,” in The Semantic Web.

Latest Advances and New Domains: 13th International Conference,
ESWC 2016, Heraklion, Crete, Greece, May 29–June 2, 2016, Pro-

ceedings 13. Springer, 2016, pp. 334–349.

[13] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

International Conference on Advanced Technologies (ICAT’23)

216

[14] W. H. Gomaa, A. A. Fahmy et al., “A survey of text similarity approaches,”

international journal of Computer Applications, vol. 68, no. 13, pp. 13–

18, 2013.

[15] J. Wang and Y. Dong, “Measurement of text similarity: a survey,”

Information, vol. 11, no. 9, p. 421, 2020.
[16] M. Yadav and M. A. Alam, “Dynamic time warping (dtw) algorithm in

speech: a review,” International Journal of Research in Electronics and

Computer Engineering, vol. 6, no. 1, pp. 524–528, 2018.
[17] W. Hou, Q. Pan, Q. Peng, and M. He, “A new method to analyze protein

sequence similarity using dynamic time warping,” Genomics, vol. 109,
no. 2, pp. 123–130, 2017.

[18] V. Froese, B. Jain, M. Rymar, and M. Weller, “Fast exact dynamic time

warping on run-length encoded time series,” Algorithmica, vol. 85, no.
2, pp. 492–508, 2023.

[19] X. Liu, Y. Zhou, and R. Zheng, “Sentence similarity based on dynamic

time warping,” in International Conference on Semantic Computing
(ICSC 2007). IEEE, 2007, pp. 250–256.

[20] M. Matuschek, T. Schlu¨ter, and S. Conrad, “Measuring text similarity

with dynamic time warping,” in Proceedings of the 2008 international

symposium on Database engineering & applications, 2008, pp. 263–

267.

[21] M. Muller, Information Retrieval for Music and Motion, 2007th ed.
Berlin, Germany: Springer, sep 2007.

[22] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common

subsequence algorithms,” in Proceedings Seventh International Sym-
posium on String Processing and Information Retrieval. SPIRE 2000,

2000, pp. 39–48.

[23] M. E. B. Menai, “Detection of plagiarism in arabic documents,” In-
ternational Journal of Information Technology and Computer Science,

vol. 10, no. 10, pp. 80–89, 2012.

[24] S. R. Alenazi, K. Ahmad, and A. Olowolayemo, “A review of similarity
measurement for record duplication detection,” in 2017 6th

International Conference on Electrical Engineering and Informatics

(ICEEI). IEEE, 2017, pp. 1–6.
[25] Ticki, “Eudex: A blazingly fast phonetic reduction/hashing algorithm,”

https://github.com/ticki/eudex, 2016.

[26] Y. Doval, M. Vilares, and J. Vilares, “On the performance of phonetic

algorithms in microtext normalization,” Expert Systems with Applica-

tions, vol. 113, pp. 213–222, 2018.

[27] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,
and reversals,” in Soviet physics doklady, vol. 10, no. 8. Soviet Union,

1966, pp. 707–710.

[28] K. Kukich, “Techniques for automatically correcting words in text,”
ACM computing surveys (CSUR), vol. 24, no. 4, pp. 377–439, 1992. [29] W.

E. Winkler, “String comparator metrics and enhanced decision rules

in the fellegi-sunter model of record linkage.” 1990.
[30] M. A. Jaro, “Advances in record-linkage methodology as applied to

matching the 1985 census of tampa, florida,” Journal of the American

Statistical Association, vol. 84, no. 406, pp. 414–420, 1989.
[31] N. Gali, R. Mariescu-Istodor, and P. Fra¨nti, “Similarity measures for title

matching,” in 2016 23rd International Conference on Pattern

Recognition (ICPR). IEEE, 2016, pp. 1548–1553.
[32] M. Flor, M. Fried, and A. Rozovskaya, “A benchmark corpus of english

misspellings and a minimally-supervised model for spelling correction,”

in Proceedings of the Fourteenth Workshop on Innovative Use of NLP

for Building Educational Applications, 2019, pp. 76–86.

