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Abstract— String similarity estimation is important in many 

fields, including natural language processing, information 

retrieval, and data mining. Dynamic Time Warping (DTW) has 

emerged as a widely used technique for measuring sequence 

similarity, effectively accommodating variations in length and 

temporal distortions. This paper presents an examination of the 

use of DTW in string similarity estimation. We delve into the 

adoption of DTW in string similarity estimation in various 

contexts, such as approximate string matching and spelling 

correction.  We investigate DTW’s strengths and limitations 

through empirical analysis, particularly in capturing complex 

patterns and variations within strings, while taking into account 

factors such as adaptability and robustness. Furthermore, we 

discuss the impact of various traditional similarity metrics in 

comparison with DTW based on their evaluation on two different 

experimental settings. The findings of this study provide 

important insights into the effectiveness and challenges of using 

DTW in string similarity estimation. This work may open up 

alternative ways for the development of more adaptive string 

similarity estimation techniques through the use of DTW. 

Keywords— string similarity, dynamic time warping, similarity 

estimation, distance measures, approximate string matching 

 

I. INTRODUCTION 

String similarity estimation plays important role in many 

fields such as natural language processing, information 

retrieval, text classification, automatic question-answering, 

data mining, bioinformatics [1][2]. Text-based studies have at 

least two essential steps which are to represent the text and to 

measure the representations to be able to compare. Traditional 

techniques have focused on common words for measuring 

similarity between documents [1]. Cosine similarity applied on 

TF-IDF representations [3] as well as set intersection measures, 

e.g., Jaccard similarity, which can also be applied on keywords 

[4], are particularly effective when texts are more likely to have 

common words. However, in some cases, the number of shared 

words among documents happens to be limited, and thus a 

latent representation is needed to capture similarity between 

documents. For that matter, vector space models [5], e.g., 

Latent Semantic Analysis (LSA) [6][7], doc2vec [8], GloVe [9], 

BERT [10], etc., stand out since they are able to encode 

semantic information in a reduced vector space. In this respect, 

graph-based models are also used as they may capture latent 

relationships between documents [11], [12]. 

Similarity measures are not only applied on documents, but 

also on keywords especially in information retrieval [13], [14]. 

Depending on the purpose, there exist many different string 

similarity estimation algorithms [15]. In this paper, we aim to 

adapt Dynamic Time Warping (DTW) to the problem of 

measuring structural similarity between strings. 

Conventionally, DTW is mostly used for sequence alignment 

in specific domains such as speech recognition [16], 

bioinformatics [17], time series analysis [18], etc., and to our 

knowledge, it has been relatively unexplored as a string 

similarity measure for keywords to be compatible with popular 

metrics. In [19], a sentence-level DTW is applied to measure 

similarity between texts, which concerns with the parts of 

speech and word order. Likewise in [20], the authors 

considered the smallest unit in sequences to be words, and thus 

compute distance between documents. Our motivation is to 

adopt DTW such that it will be possible to calculate a degree of 

similarity between two keywords in a similar manner to 

common string similarity metrics. In the rest of the paper, we 

first explain how to transform DTW to a similarity measure by 

constructing a character-level binary cost matrix, then we 

briefly describe some common string similarity metrics to 

compare with our method, and lastly we conduct experiments 

on two different dataset to comparatively evaluate the proposed 

method. 

https://doi.org/10.58190/icat.2023.12
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II. METHODS 

A. Dynamic Time Warping (DTW) 

DTW aims to find an optimal alignment between two 

independent sequences X = (x1, x2, ..., xN) and Y = (y1, y2, ..., yM) 

of length N ∈ N and M ∈ N respectively, such that the sum of 

distances between the aligned points will be a global minimum 

[21]. More formally, its objective can be formulated as follows: 

 

 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛 ( ∑ 𝑑(𝑋𝑖 , 𝑌𝑖)

(𝑖,𝑗)∈𝐴

) 

(1) 

 

Here, A refers to the set of all possible temporal paths that 

can be constructed between X and Y. The distance function d(X, 

Y ) yields the distance between any given pair of elements from 

the two sequences. The optimal path with the minimum total 

distance is found by dynamic programming. 

 

B. Binary Encoding 

DTW requires that a cost matrix be constructed from a 

given pair of strings.Here, we adopt the most basic scheme 

where a binary encoding is used to create a pairwise distance 

matrix between the single characters in the two strings. If two 

characters are the same, the distance is 0; otherwise the distance 

simply becomes 1. A distance matrix constructed by the words 

“proof” and “profe” is given as an example in Table I. 
 

TABLE I 

BINARY DISTANCE MATRIX 

 p r o o f 
p 0 1 1 1 1 
r 1 0 1 1 1 
o 1 1 0 0 1 
f 1 1 1 1 0 
e 1 1 1 1 1 

 

The pairwise distance matrix can be used to infer the 

optimal DTW path. This path is a sequence of points that 

represents the optimal alignment with the minimum total cost 

between the two strings. The green coloured cells in Table II 

corresponds to the optimal path and the minimum total distance 

associated with the path is calculated as 2. 

 

TABLE II 

OPTIMAL DTW PATH 

 w i t h o u t 
w 0 1 1 1 1 1 1 
h 1 1 1 0 1 1 1 
i 1 0 1 1 1 1 1 
t 1 1 0 1 1 1 0 
o 1 1 1 1 0 1 1 
u 1 1 1 1 1 0 1 
t 1 1 0 1 1 1 0 

 

C. Distance Normalization 

If the given two strings are of different lengths, the minimum 

cost may not come out as an accurate measure of 

dissimilarity. For this reason, we optionally apply 

normalization in a similar manner to the Longest Common 

Substring (LCS) algorithm in order to obtain a standardized 

measure of distance. In this respect, we apply two different 

normalization schemes: 

MaxLen Normalization: In MaxLen normalization process, 

the minimum total distance is divided by the longest length 

of the given strings. 

PathLen Normalization: In PathLen normalization, the 

minimum total distance is divided by the total number of 

steps in the DTW path. 

 

STRING SIMILARITY MEASURES 

In this section, we describe different types of string 

similarity algorithms that we used in our experiments for 

comparison with DTW. Some of these algorithms require 

tokens for the computation, so we used character-based 

tokenization with different q values. 

Character-based tokenization is a simple and straightforward 

way of tokenizing strings. It simply splits the string into 

individual characters, or pairs of characters if q is greater 

than 1.  For example, tokens of the word “similar” with q = 1 

are [s, i, m, i, l, a, r] and tokens with q = 2 are [si, im, mi, il, 

la, ar]. We applied at most up to q = 3 for the intersection-

based algorithms. 
 

A. Longest Common Substring 

The Longest Common Substring (LCS) [22] is the longest 

consecutive sequence  of  two or more  texts.  LCS can be 

used for a variety of tasks, including plagiarism detection 

[23] and data deduplication [24]. The normalised similarity 

between two strings is calculated by dividing the length of 

the common string by the length of the longest among the 

texts. This gives a measure of how similar the texts are. 

 

B. Eudex 

Eudex [25] is a phonetic hashing algorithm that computes 

the Hamming distance between two texts based on their 

phonetic mapping. The algorithm uses four tables created 

according to the International Phonetic Alphabet (IPA) to 

extract encodings. Two of the tables are used for ASCII 

and C1 (Latin Supplement) characters in the first position 

of the word, and the other two tables are used for the rest of 

the characters [26]. Each character is represented by 8-bits, 

and those that share more phonetic resemblance will have 

lower Hamming distances. The final similarity is calculated 
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by measuring the Hamming distances of all the characters 

by the prefixes of a given pair of strings. 
 

C. Levenshtein Distance 

The Levenshtein distance (Edit distance) [27] is a measure 

of a structural similarity between two strings, commonly 

used in natural language processing [28] and information 

retrieval tasks [13]. It is defined as the minimum number of 

editing operations required to transform string a into string b. 

The original editing operations, which include substitution, 

insertion, and deletion, were later extended to incorporate 

transpositions as well. 
 

D. Jaccard 

The Jaccard similarity index is calculated as the ratio of 

the common elements between two sets to the total number 

of elements in the union set. A high Jaccard index indicates 

a high degree of similarity. Jaccard index is calculated 

according to the formula: 

 

 
𝐽(𝑋, 𝑌) =

|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 

(2) 

 

where x and y are two sets. |X∩Y| is the number of elements 

common to both sets, while |X ∪ Y| is the total number of 
elements in the union of the two sets. 
 

E. Ample 

Ample is the measure of text similarity that calculates the 

similarity between two strings using set intersection, similar to 

the Jaccard similarity coefficient. The Ample formula is as 

follows: 

 

 
𝐴(𝑥, 𝑦) = |

𝑏

𝑎 + 𝑏
−

𝑐

𝑐 + 𝑑
| 

(3) 

 

Let us consider two sets x and y. We compute b as the size 

of the intersection of the two, i.e., b = |x ∩ y|, and subsequently, 

a = |x| − b, c = |y| − b, and d = p − |x ∪ y| where p is calculated 

by: 

 

 𝑝 = |Σ|𝑞 (4) 

 

Here, |Σ| refers to the number of distinct symbols of the 

alphabet in use, and q denotes the tokenization parameter 

explained previously. For example, with q = 2, p is calculated 

as 282 with the start token ($) and end token (#) added for 

values of q greater than or equal to 2. However, for q = 1, these 

symbols are not required. In this case, the number of possible 

tokens is calculated as 261, which is the length of the standard 

English alphabet. 

The first term in the equation stands for a degree of similarity, 

and the second ratio that of dissimilarity. As a result, a higher 

Ample score indicates a higher similarity. 

 

F. Jaro-Winkler 

Jaro-Winkler [29] is an algorithm that computes similarity 

over edit distance between two texts. It is a variant of Jaro [30] 

and uses prefix size p and prefix length l in addition to Jaro 

similarity. The formula of the Jaro-Winkler similarity is 

 

 𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 ∗ 𝑝 ∗ (1 − 𝑠𝑖𝑚𝑗) (5) 

 

where 

• 𝑠𝑖𝑚𝑗 is the Jaro similarity 

• p is a constant scaling factor 

• l is the length of the common prefix at the beginning of the 

string. 

In this paper we used the p value of 0.1 which is the default 

value. The p value should not exceed 0.25, otherwise the 

similarity may become greater than 1.0. 

The Jaro similarity formula is calculated as follows: 

 

 
𝑠𝑖𝑚𝑗 =

1

3
(
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+
𝑚 − 𝑡

𝑚
) 

(6) 

 

where 

• s1 and s2 is the two strings being compared 

• m is the number of shared characters 

• t is the number of transpositions 

• |s1| and |s2| are the lengths of the strings s1 and s2, 

respectively. 

 

III. EXPERIMENTAL RESULTS 

A. Datasets 

1) Titler: One of the datasets we used in this study is the 

Titler [31] dataset. Titler is a dataset that contains links of some 

websites and titles related to these websites annotated by 

human assessors. Some examples of link/title pairs are given in 

Table III. 

 

TABLE III 

TITLER DATASET 

Link Title 

http://www.thefox.co.nz/ The Fox 

http://fourstarpizza.ie/ Four Star Pizza 

http://chinesecricketclub.com/ Chinese Cricket Club 

http://www.themezegrill.com/ Meze Grill 

http://www.brazenhead.com/ The Brazen Head 

http://www.sodopizza.co.uk/ Sodo Pizza Caf 

 

We created 4 different scenarios for the titles in the 

data. These cases are: 

http://www.thefox.co.nz/
http://fourstarpizza.ie/
http://chinesecricketclub.com/
http://www.themezegrill.com/
http://www.brazenhead.com/
http://www.sodopizza.co.uk/


International Conference on Advanced Technologies (ICAT’23) 

  

214 

 

• Case1 - Lowercased 

• Case2 - Lowercased, Removed vowels 

• Case3 - Lowercased, Removed vowels and whitespaces 

• Case4 - Lowercased, Removed whitespaces 
 

TABLE IV 

CASES FOR TITLER DATA 

Case1 Case2 Case3 Case4 
the apollo th pll thpll theapollo 

aqua dining aq dnng aqdnng aquadining 
manta mnt mnt manta 

manta 
restaurant 

mnt rstrnt mntrstrnt mantarestauran
t piato pt pt piato 

piato restaurant pt rstrnt ptrstrnt piatorestaurant 

 
We illustrate how titles are transformed for each case 

through some examples as shown in Table IV. Note that 

we exclude leading vowels in vowel removal process. 

Since the title mostly happens to be relevant to the 

information contained in the root of the URL, we construct 

two distinct collections of ground-truth items, namely, URL 

and Root URL. As shown by the following examples, the 

protocol information and the subdomain (www) are removed 

in both cases, while the second case only retains the root. 

• URL = coffee-express.com.au 

• Root URL = coffee-express 

 

Considering all of the cases mentioned above, we will conduct 

a total of 8 different experiments to compare string similarity 

measures. 

 

2) TOEFL: We used the TOEFL-Spell Corpus dataset based 

on the ETS Corpus of Non-Native Written English [32]. It 

contains spelling errors made by more than 6000 non-native 

speakers, but in this study, we have deduplicated the same 

misspellings to ensure that the same misspelled word does not 

match more than one correct word. After singularizing the 

data, we obtained 4056 misspellings and correct word 

matches. Some examples are given in Table V. 
 

TABLE V 

TOEFL DATA 

Misspelling Correction 
writi writing 

beacuse because 
enviroment environment 
suceesfull successful 
bussiness business 
succesful successful 
comfront confront 

 

B. Setup 

In our experiments, we consider the given link/title pairs in 

the Titler dataset to be the ground-truth. Then, after extracting 

all possible link/title pairs in the data, we compute all pairwise 

similarity scores using different approaches and take the 

highest as a prediction for each title. We then compare these 

predictions with the true labels and calculate an accuracy score 

for evaluation. 

The Titler data contained some titles that are linked to 

same URLs. To improve the quality of our experiments, we 

separated these titles into their individual components before 

extracting the possible link/title pairs as illustrated below. 

 
Link Title 

http://www.theapollo.com.au/ The Apollo — The Apollo 
Restaurant 

 
Link Title 

http://www.theapollo.com.au/ The Apollo 
http://www.theapollo.com.au/ The Apollo Restaurant 

 
As for the TOEFL data, we first extract all possible 

misspelling/correction pairs and compute their pairwise sim- 

ilarities by each approach. Then, to predict correction for each 

misspelling, we take the highest among the similarity scores as 

shown in Table VI for the Jaro-Winkler metric, in the same way 

as performed for the Titler dataset. 
 

TABLE VI 

JARO-WINKLER TOEFL SCORES 

Misspelling Correction Jaro-Winkler (q=1) 
writi writing 0.942857 
writi within 0.840000 
writi citizen 0.676190 
writi erratic 0.676190 

... ... ... 
beacuse because 0.961905 
beacuse beauties 0.869444 
beacuse Because 0.849206 
beacuse became 0.826032 

... ... ... 
enviroment environment 0.961818 
enviroment environmental 0.933846 
enviroment environmentally 0.913333 
enviroment enjoyment 0.860741 

 

C. Results 

Table VII summarizes the comparative accuracy results 

between all models for both the Titler and the TOEFL 

datasets. For Titler data, we observe that Jaro-Winkler out- 

performs the other models in all cases, regardless of the 

q value. The models whose performance were closest to 

that of Jaro-Winkler turned out to be other set intersection- 

based algorithms, i.e., Ample and Jaccard, particularly for 

Case1 and Case4. It is notable that Jaro-Winkler algorithm 

is much more resistant to vowel removal than the other two. 

Furthermore, the normalized DTW and Levenshtein metrics 

were also found to be more robust to character removals than 

Ample, Jaccard, Eudex and LCS. 

 

http://www.theapollo.com.au/
http://www.theapollo.com.au/
http://www.theapollo.com.au/
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TABLE VII 

SUMMARY OF RESULTS 

Model 
Titler 

Toefl Url Root Url 
Case1 Case2 Case3 Case4 Case1 Case2 Case3 Case4 

LCS 0.56961 0.10103 0.15752 0.79157 0.56802 0.09706 0.16309 0.77566 0.47584 
Eudex 0.65473 0.10899 0.10899 0.65473 0.68417 0.10581 0.10581 0.68417 0.44625 

Levenshtein 0.70247 0.57518 0.60700 0.71758 0.71201 0.58075 0.60382 0.73111 0.87303 
Ample (q=1) 0.00159 0.00080 0.00000 0.00557 0.59029 0.19411 0.30788 0.64757 0.76849 
Ample (q=2) 0.80748 0.41209 0.48687 0.81543 0.79475 0.28719 0.35640 0.80907 0.86021 
Ample (q=3) 0.82657 0.19173 0.26730 0.84885 0.79554 0.13126 0.22673 0.83134 0.86243 

Jaccard (q=1) 0.30469 0.20764 0.19014 0.29674 0.47494 0.34288 0.31981 0.46698 0.56164 
Jaccard (q=2) 0.79952 0.35163 0.41925 0.81464 0.81225 0.35084 0.41607 0.82339 0.74482 
Jaccard (q=3) 0.82339 0.13683 0.21639 0.83850 0.81941 0.13126 0.21957 0.83532 0.61243 

Jaro-Winkler (q=1) 0.79395 0.72713 0.72633 0.79952 0.82657 0.82657 0.72554 0.82737 0.87327 
Jaro-Winkler (q=2) 0.85680 0.54813 0.59666 0.86158 0.84964 0.84964 0.57916 0.85998 0.86760 
Jaro-Winkler (q=3) 0.85123 0.25298 0.34924 0.86158 0.83134 0.83134 0.35879 0.85362 0.86119 

DTW 0.54336 0.11138 0.10263 0.56006 0.70565 0.70565 0.39300 0.71281 0.94412 
DTW (MaxLen Norm) 0.70883 0.52983 0.55290 0.71758 0.73111 0.73111 0.59029 0.73986 0.90829 
DTW (PathLen Norm) 0.71042 0.52824 0.54574 0.70644 0.73270 0.73270 0.60064 0.73588 0.90312 

For the URL case in the Titler dataset, the Ample model 

with q = 1 seems to perform poorly. In the URL case, 

unlike the Root URL case, some links are very long, and 

consequently, the token count of these links are quite high 

including numbers and some punctuation. This causes the 

value of d in the expression of A(x, y) to be negative, 

because p is calculated as 26 for q = 1. If we set d = 0 and 

continue the process as such, the similarity score between 

two strings becomes much higher than it should be leading 

to incorrect predictions. It should be noted that this situation 

only occurs for Ample (q = 1) in the URL case. 

For the TOEFL data, we can observe that DTW outper- 

forms all the other approaches with or without normalization. 

In contrast to the Titler dataset, normalization seems to 

reduce the performance of DTW. This is possibly due to the 

fact that the lengths of misspellings and target correct forms 

do not as significantly differ from each other as in the Titler 

dataset. Overall, the DTW-based string similarity metric has 

been found much more effective in a spelling correction task 

rather than partial string matching. 

 

IV. CONCLUSION 

In this study, we have developed a method for measuring 

string similarity using DTW. In this respect, we have simply 

applied a binary cost function, which have been found 

effective particularly in the spelling correction task through a 

series of experiments with several traditional string similarity 

metrics. The proposed method can also be preferred for its 

robustness to non-systematic deletion/insertion of characters 

as well as for its parameter-free nature in contrast to set 

intersection algorithms. While our method uses the binary 

encoding between strings to compute the DTW distance, it 

can be easily extended such that distance matrix of the input 

strings are constructed via a weighted scheme depending on 

the task. This aspect makes the proposed method suitable for 

future improvements. 
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