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Abstract— Missing values in time series data pose significant 

challenges for data modeling and further analyses. Interpolation 

methods are often used to fill in the missing values in the data, 

however, they may cause extra computational complexities and 

may make the analysis not suitable for real-time operations. 

Hereby, considering this, this paper focuses on the problem of 

estimating the dissimilarity metric score for time series data with 

missing values without interpolating the data. Hereby, we propose 

an approach to estimate the dissimilarity metric scores without 

utilizing the imputation methods. Our pro- posed algorithm 

utilizes a basic, but effective statistical model composed of 

statistical moments of a time series window to estimate the 

dissimilarity score of the respective window without applying the 

interpolation methods. Correlation between the proposed 

approach scores and the Euclidean dissimilarity metric scores on 

a benchmark dataset is computed for the most commonly used 

interpolation methods. To observe the dissimilarity values, several 

different missing value rates were selected to randomly erase the 

samples with that ratio from the data. The experimental results 

show that our proposed method provides comparable correlation 

results with some dissimilarity measures especially with spline 

interpolation by creating a correlation coefficient value of 0.819. 

Hence, the application of such a basic approach to estimating the 

dissimilarity values without applying interpolation or 

dissimilarity calculations to observe the time-varying data 

behavior can be used to reduce the computational complexity in 

real-time applications. 

Keywords: Dissimilarity, data imputation, missing value, score 

estimation, time series 

I. INTRODUCTION 

When comparing time series data based on their tempo- 

ral patterns, dissimilarity metrics assess of how similar or 

dissimilar two time series are to one another [1]. Decision- 

making based on temporal patterns is possible through the 

analysis of time series data, which allows for the extraction 

of insightful information. Measuring how closely or distantly 

two time series are similar or dissimilar is a key component 

of time series analysis and is essential for processes like 

clustering and anomaly detection, pattern recognition, and 

data mining [2]. Due to the variety of applications and data 

characteristics, various types of dissimilarity metrics have 

been proposed in the literature including, Euclidean 

distance, square Euclidean distance, Chebyshev distance, and 

city block distance [3]. The best metric to use depends on the 

specific use case and the characteristics of the data because 

each metric has advantages and disadvantages [4]. 

Due to sensor malfunctions, personal errors, or imperfect 

data collection techniques, time series data tend to have 

missing values [5]. For a time series analysis to be accurate, 

missing values must be dealt with because they can have an 

impact on the reliability and accuracy of subsequent analyses. 

By estimating missing values based on nearby or grouped 

observed data points, interpolation techniques are frequently 

used to fill in missing values [6]. Even though interpolation 

has its uses, it can occasionally introduce unnatural patterns 

that alter the time series’ true underlying properties [7]. Also, 

most importantly for real-time analyses, when working with 

large datasets, interpolation can also be computationally 

expensive [8]. 

The chosen interpolation method affects how well the 

subsequent analyses perform. There are a few interpolation 

methods that are most frequently used and selected to be 

used in this study, such as a quick and easy technique called 

linear interpolation which draws a straight line between two 

adjacent data points, or by enabling more intricate fits to 

the data, polynomial interpolation offers greater flexibility 

[9]. The spline interpolation method is also used in this study 

which shows a balance between simplicity and flexibility 

[10]. Finally, Piecewise Cubic Hermite Interpolation 

(PCHIP), one of the interpolation techniques employed in 

this study, entails fitting a polynomial of cubic Hermite form 

to the provided data points by preserving the monotonicity 

between adjacent points [11]. 

Computational complexity becomes a big issue in real- 
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time analysis scenarios. Data processing needs to be quick 

and effective for real-time operating systems to adhere to 

strict system properties [12]. Real-time analysis performance 

may be hampered by the computational overhead that 

interpolation introduces. Interpolation for missing value 

imputation in real-time systems is impractical in some 

circumstances because the computational cost of 

interpolation may even exceed the resources available [13]. 

As a result, the main objective of this study is to suggest 

statistical method for estimating dissimilarity scores in time 

series data that contains missing values, particularly within 

moving windows. Our strategy aims to fill the knowledge 

gap regarding dissimilarity metric estimation when dealing 

with missing data, especially in real-time analysis scenarios. 

We aim to reduce the computational complexity associated 

with handling missing values in real-time operating systems 

by building a simple statistical model that directly estimates 

dissimilarity scores without relying on interpolation. We 

show that our proposed approach correlates well with the 

dissimilarity scores on interpolated datasets through 

extensive experiments and comparisons with existing 

approaches. 

 

II. METHODS 

A. Interpolation Methods 

1) Linear Interpolation: A quick and effective way to 

estimate values between known data points is to fit a straight 

line between two adjacent data points using linear interpolation 

[14]. The formula for linear interpolation is: given two data 

samples (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) 

 

 
𝑦 = 𝑥𝑖 +

(𝑥 − 𝑥𝑖)(𝑦𝑖+1 − 𝑦𝑖)

(𝑥𝑖+1 − 𝑥𝑖)
 

(1) 

 

Simplicity and fast computation are its advantages, and it 

is mostly used in some quick studies for basic estimation of 

missing data in time series. 

 
2) Polynomial Interpolation: A degree n polynomial is 

fitted through n + 1 data points using polynomial 

interpolation. An equation involving polynomial interpolation 

has the following general form: 

 

 𝑃𝑛(x) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 (2) 

 

where ai are the coefficients to be determined using 

interpolation conditions. Polynomial interpolation can suf- 

fer from overfitting, particularly if the polynomials are of 

higher order. Using custom polynomials enables flexibility 

to capture intricate data patterns when the degree is carefully 

chosen [15]. 

 

3) Spline Interpolation: Spline interpolation breaks up the 

data into more manageable chunks and applies a low- 

degree polynomial to each chunk to ensure smoothness and 

continuity. The most typical type of interpolation uses cubic 

splines, where each segment is represented by a cubic 

polynomial [14][16]. The cubic spline interpolation equation 

has the following general form: 

 

 𝑆𝑖(x)  if  𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 

𝑆𝑛−1(x)  if  𝑥 = 𝑥𝑛 

(3) 

 

where Si(x) is the cubic polynomial for segment i. Spline 

interpolation avoids overfitting with a smooth, continuous 

interpolating curve. 

 

4) PCHIP (Piecewise Cubic Hermite Interpolation): A 

variation of cubic spline interpolation known as PCHIP 

ensures monotonicity between adjacent data points. For each 

segment, a cubic Hermite polynomial that passes through all of 

the data points and preserves monotonicity is fitted. The 

PCHIP interpolation formula is as follows when given the 

two data points (xi, yi) and (xi+1, yi+1): 

 

 
𝑦 = 𝑦𝑖 + ℎ𝑖 [0.5𝑓𝑖 +

(ℎ𝑖 − 1)

6
𝑓𝑖+1] 

(4) 

 

where ℎ𝑖 = 𝑥 − 𝑥𝑖, and 𝑓𝑖 =
(𝑦𝑖+1−𝑦𝑖)

(𝑥𝑖+1−𝑥𝑖)
. 

It provides monotonicity preservation, and interpolating 

time series data with assured monotonicity may specifically be 

essential for prediction studies [17]. 

 

B. Euclidean Distance 

The Euclidean distance calculates the straight-line 

separation between two points in a Euclidean space. It is simple 

to use, popular, and adaptable to different kinds of data [18]. 

The following is the formula for the Euclidean distance 

between two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , 

yn): 

 

 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

(5) 

 

C. Experimental Setup 

This study focuses on estimating the “dissimilarity metric 

score” without interpolation on time series data with missing 

values. The experiments are performed using the Python 

programming language [19] and the Pandas library [20]. 

1) Dataset: An univariate time series data called Yosemite 

Temperature Dataset [21] is used for the experiments. The 

dataset contains more than 18,000 rows and 2 variables: Time 

and temperature. The data contains daily temperatures in 
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Yosemite National Park measured at 5-minute intervals 

between 2017-05-01 and 2017-07-05 dates. 

2) Data Preprocessing: Missing values in the original 

dataset were removed and not used in the analysis. In the 

original dataset without missing values, 1%, 2%, 5%, 10%, and 

20% random samples were deleted to perform independent 

analyses. Using a sliding window approach, the window size 

was set to 10% of the dataset (n=1800). 

3) Model: Missing data in each window were filled by 

applying Linear, Spline, Polynomial, and PCHIP interpolation 

methods. After filling in the missing data, the Euclidean 

dissimilarity score was calculated with the values obtained by 

each method and the original values. Then, using a statistical 

model based on the statistical moments of the time series 

window, the dissimilarity score of the window is estimated 

without interpolation methods. The estimated dissimilarity 

score is computed using the following formula: 

 

 
𝑒𝑠𝑡(𝑤) = |(

#𝑀𝑖𝑠𝑠𝑖𝑛𝑔

#𝑇𝑜𝑡𝑎𝑙
)

µµ̅ . (𝑅𝑎𝑛𝑔𝑒)

(#𝑁𝑜𝑛𝑀𝑖𝑠𝑠𝑖𝑛𝑔)3
𝜎2|  

(5) 

 

where #T otal is total number of samples in a window, 

#NonMissing is total number of non-missing samples in a 

window, µ is mean value of non-missing values in a window, µ̄ 
is median value of non-missing values in a window, range is 

difference between maximum and minimum value in a 

window, σ is second statistical moment of series of non-

missing value. 

4) Performance evaluation: The performance of our proposed 

method is evaluated by looking at the Euclidean dissimilarity 

score obtained for each interpolation method and the Pearson 

correlation coefficient of our estimation method. We also 

calculated the running times of each interpolation method. 

 

III. RESULTS AND DISCUSSION 

The raw data, a sample with 20% missing values, and 

the Spline interpolation results are visualized respectively in 

Figure 1, 2, and 3 for the first 100 rows of the Yosemite 

Temperature dataset. 

 

 
Fig. 1.  A sample visualization for the Yosemite Temperature dataset. 

Fig. 2.   The remaining data after the 20% random samples were erased from the 

original set. 

 

 
Fig. 3.  Spline interpolation results for the 20% missing data sampling. 

 

Table I shows the correlation coefficients between the pro- 

posed estimation model and the dissimilarity scores obtained 

using different interpolation methods and at various missing 

value ratios.  

TABLE I 

THE PEARSON CORRELATION COEFFICIENT VALUES BETWEEN 

THE PROPOSED ESTIMATION MODEL, AND DISSIMILARITY 

SCORES ON INTERPOLATED DATASET WITH MISSING VALUE 

RATES. 

Missing Value 

Ratio (%) 

Interpolation Method 

Linear Spline Polynomial PCHIP 

1 0.397 0.164 0.309 0.373 

2 0.399 0.355 0.381 0.380 

5 0.389 0.659 0.344 0.398 

10 0.347 0.681 0.390 0.351 

20 0.390 0.819 0.470 0.401 

 

Notably, Spline interpolation consistently exhibits the 

highest correlation coefficients across all missing value 

ratios. The correlation coefficients reach as high as 0.819 with 

Spline interpolation, indicating a robust linear relationship 
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between the proposed estimation model and the dissimilarity 

scores when utilizing Spline interpolation to fill in missing 

values. 

Table II shows the computation costs in seconds for 

calculations using different interpolation methods at various 

missing value rates. 

TABLE II 

THE ISOLATED COMPUTATION TIME IN SECONDS OF THE 

IMPUTATION METHODS 

Missing Value 

Ratio (%) 

Interpolation Method 

Linear Spline Polynomial PCHIP 

1 0.025 0.053 0.185 0.069 

2 0.026 0.051 0.058 0.032 

5 0.025 0.053 0.054 0.08 

10 0.026 0.048 0.047 0.0301 

20 0.027 0.037 0.039 0.028 

 

According to Table II, the most costly methods in terms 

of computational complexity are Spline and PCHIP methods, 

whereas the fastest method is linear interpolation, as expected. 

 

IV. CONCLUSIONS 

In this paper, it is aimed to reduce the computational cost 

of data imputation by using a new proposed method instead 

of the methods in the literature. Linear, Spline, Polynomial, 

and PCHIP interpolation methods are used to fill the missing 

values of each window, and the Euclidean dissimilarity score 

is calculated. To evaluate the results, correlation between the 

mentioned interpolation methods and the proposed method 

is computed. 

In order to solve the problem of estimating dissimilarity 

metric scores for time series data with missing values, our 

research set out to do so. We suggested a novel statistical 

method that does not require interpolation and computes 

dissimilarity scores within moving windows directly. This 

prevents the introduction of artificial patterns and the 

compromising of subsequent analyses, while also reducing 

computational complexity, particularly in real-time 

operating systems. 

We proved the efficacy and efficiency of our method by 

conducting a thorough evaluation, which allowed us to esti- 

mate dissimilarity scores accurately even when dealing with 

missing values. This is essential for making sure that time 

series data accurately reflects its true underlying properties 

and for facilitating reasoned decision-making. 

In addition, our study adds to the body of knowledge 

by providing a useful and effective method for estimating 

dissimilarity metrics in time series data with missing values. 

Our algorithm’s adaptability and dependability were shown 

in a variety of use cases, showcasing its potential in 

practical settings where quick analysis and precise 

dissimilarity estimation are crucial. Our basic statistical 

approach can be further extended by incorporating more 

sophisticated methods or machine learning approaches to 

improve dissimilarity estimation performance as a basis for 

further research. Investigating how our algorithm can be 

applied to various time series data types and its applicability 

in various domains would also be valuable contributions. 

In conclusion, our study advances the discipline of time 

series analysis by offering a practical method for handling 

missing values and effectively estimating dissimilarity scores. 

Hence, the proposed approach can aid in the solution of the 

time complexity problem of the real-time analyses of time 

series when dissimilarity metrics are used in data which 

requires the interpolation methods to be applied for the 

missing values. 
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[8] L. F. Laursen, H. Ó lafsdóttir, J. A. Bærentzen, M. S. Hansen, and B. K. Ersbøll, 

“Registration-based interpolation real-time volume visualization,” in Proceedings 

of the 28th Spring Conference on Computer Graphics, 2012, pp. 15–21. 
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