
Proceedings Paper DOI: 10.58190/icat.2023.35

PROCEEDINGS OF

INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES

https://proceedings.icatsconf.org/

11th International Conference on Advanced Technologies (ICAT'23), Istanbul-Turkiye, August 17-19, 2023.

168

Formal Methods for an Agile Scrum Software

Development Methodology
Fisokuhle Hopewell Nyembe 1, John Andrew van der Poll 2, Hugo Hendrik Lotriet 3

1 School of Computing, College of Science, Engineering and Technology (CSET), Science Campus, University of South Africa

(Unisa), South Africa

37233858@mylife.unisa.ac.za, ORCID: 0000-0001-8205-5088
2 Digital Transformation and Innovation, Graduate School of Business Leadership (SBL), Midrand Campus, University of

South Africa (Unisa), South Africa

vdpolja@unisa.ac.za, ORCID: 0000-0001-6557-7749
3 School of Computing, College of Science, Engineering and Technology (CSET), Science Campus, University of South Africa

(Unisa), South Africa

lotrihh@unisa.ac.za, ORCID: 0000-0002-0353-5073

Abstract— Efficient, high-quality software systems embodying

dependable methods are in high demand, which has led to a wide

range of competitive market solutions. One effective technique

that arguably has excelled above others is the Agile Software

Development Methodology (ASDM). Agile approaches’ capacity

to produce software in a way that is flexible to changes is the main

factor that makes them preferable. Scrum, a recommended Agile

methodology, prioritises feature coverage and project structure.

Because iterative methodologies encourage engagement from

cross-functional teams, including consumers, Agile provides

flexibility in responding to change. However, achieving

methodological efficiency is insufficient while developing

software; high-quality software should be achieved with equal

consideration. Formal Methods (FMs), which are mathematically

based techniques, can offer highly dependable software but suffer

from a steep learning curve in mastering the underlying discrete

mathematics and logic. This research investigates the extent to

which FMs may be embedded in traditional Agile as embodied by

Scrum. Future work in this area would be the development of a

framework for embedding FMs in Scrum, followed by a survey

among software practitioners to establish the feasibility of our

technique.

Keywords— Agile Software Development Methodology, Formal

Methods (FMs), Formal Specification, Proof Obligation (PO),

Scrum, Z.

I. INTRODUCTION

Numerous software development methodologies aim to

address the challenge of producing quality software on time,

within budget, and preserving a company’s market dominance

[1], [2]. Conventional approaches often assumed that scope

could be defined up front, a plan could be put in place, and the

plan could be executed with little or no change. Over time many

embraced the Agile Software Development methodology [3],

characterised by being throughput-oriented and focusing on

delivering value to customers as rapidly as possible [4]. It can

also be used as a task management framework to apply familiar

implementation approaches to the task's completion in line with

re-usability.

Scrum, deemed to be a development, delivery, and

maintenance strategy for complex products, is a well-known

Agile software development methodology for approaching

difficult adaptive problems and delivering high-value products

in an innovative way. Scrum is described as easily understood,

lightweight, yet somewhat hard to master [2]. Short project

cycles, known as Sprints, are used to plan, design, build, test,

review, and deploy a usable deliverable [2]. The Scrum

framework comprises Scrum Teams and their associated duties,

tasks, activities, objects, and guidelines. Each component of the

framework serves a particular purpose and is crucial to the

adoption and success of Scrum.

Scrum processes embody a small group of people who are

very adaptable and flexible. These teams iterate and

incrementally deliver products, facilitating possibilities for

feedback. A scrum team is made up of a Product Owner, a

Development Team, and a Scrum Master. Scrum Teams are

also distinguished by their capacity to self-organise and

collaborate across departments [2].

Despite the advantages of short development cycles and

regular feedback from stakeholders, rapid software

development using Agile may lead to challenges regarding lack

of planning, scope creep, and overbudgeting, especially with

respect to mission-critical software development where human

lives may be at stake [5]. Developers may, therefore, consider

using Formal Methods (FMs) as part of the development.

The use of FMs for software development involves using

mathematical techniques to construct highly dependable

software to meet end-user requirements. Advocates of FMs

https://doi.org/10.58190/icat.2023.35
https://proceedings.icatsconf.org/
mailto:37233858@mylife.unisa.ac.za
mailto:vdpolja@unisa.ac.za
mailto:lotrihh@unisa.ac.za

International Conference on Advanced Technologies (ICAT’23)

169

point to the benefits to be gained in producing high-quality

software that may be provably correct, while critics point to the

steep learning curves in mastering the underlying mathematics

and logic.

With Agile at one end of the spectrum and FMs at the

other end, it may be worth the effort to investigate the extent

to which FMs may be embedded in Agile embodied by (e.g.)

the Scrum methodology. This then leads to the objective of

our paper:

Objective: Investigate the extent to which FMs may be

embedded in the Agile Scrum methodology.

II. LITERATURE REVIEW

Our literature review centres primarily on Agile, defined by

Scrum and FMs for software development.

A. Agile Software Development

Agile, as defined by the Agile Manifesto [6], rapidly

responds to change and is attributed to having the ability to

balance flexibility and structure [7]. Owing to its widespread

use, our research will focus on the popular Agile variant called

Scrum, characterised by piece-meal project cycles, known as

Sprints, used for delivering planned, designed, built, and tested

reviewed software systems [2]. Contrary to, for example, the

traditional Waterfall Software Development Life Cycle (SDLC)

[4], where full system requirements are available upfront and

sufficient time is allocated to planning processes prior to the

development, the Agile Software Development (ASD) practice

known as IKIWISI (I’ll know it When I See It) implies that full

system requirements may not always be available upfront.

Rather requirements are discovered as the system is developed.

These happen once or twice a day through short sprints [2],

during which the user may have regular insight into the

development process. This suggests that users can better

describe their full requirements after the initial idea has been

translated into a functioning prototype [8].

Development interspersed by scrum sessions occurs

iteratively, embodying the development of the concept, design,

build, and test. In a way, therefore, an Agile iteration is a

Waterfall development in the small except for the maintenance

phase.

1) User Stories:

User stories describe scenarios to interpret how the system

should function [9]. They assist in advancing the end-user

perspective on the system and are the beginning and end points

of the requirements coverage. System features are interpreted

as user stories, recorded on storyboards, and tracked daily.

Three main Agile practices are used to record system features,

and these are requirements involving user story reviews, unit

testing, and evolutionary prototyping., using, amongst others,

JAD (refer below).

User stories are specified in a non-technical notation, e.g.,

natural language, and are continuously enhanced and refined

throughout the development as more becomes known about the

system. This is in line with Agile’s principle of minimal

documentation, implying that no formal requirements are to be

produced [10]. The system features are piecemeal and aimed at

leading developers into a fully functioning product required by

the client. Therefore, one of the main differences between

traditional methods and Agile is that the latter has less appetite

for thorough requirements analysis [10]. Consequently, ASD

has become less structured in recent years and has mostly been

characterized by the three (3) faces of simplicity, namely,

minimalism, quality design, and generative rules [9].

Agile defines three main requirements analysis techniques.

These are JAD (Joint Application Development), prioritising

users over tools and processes; modelling, adhering to the 11th

principle of agility; and prioritisation, involving storyboards

which organise the project according to priorities. We note that

the emphasis on end users aligns with the Fifth Industrial

Revolution (5IR), in which the emphasis is moved back to the

human, e.g., a harmonious collaboration between humans and

machines [11].

2) Agile Challenges

Despite its lucrative features, Agile incurs a number of

disadvantages. Reference [10] notes challenges in the

management of requirements in ASD – these difficulties are a

result of the pressure that comes with expectations of fast

deployments. Scrum teams typically do not know what the

result (or just a few cycles down the line) will look like from

any given point of development. It is, therefore, hard to

estimate what it will cost, how long it might take, and which

resources will be needed (especially when the project grows

larger and more complex) [12]. It may be easy for scrum teams

to get side-tracked by delivering unexpected features since it

requires minimal planning at the beginning Since scrum teams

often work on each component in separate cycles, the finished

product usually seems fragmented instead of unified [2].

The documentation in Agile projects happens continuously

and often just in time (JiT) for the output rather than from the

beginning. In this manner, it becomes less detailed and is often

put on the back burner [2].

Project management maturity appears to be an added

challenge for Agile. Reference [13] argues that it is hard for

Agile to achieve a maturity level beyond level 2 and that a

Project Management Information System (PMIS) should be

embedded in, for example, the PMBOK.

B. Formal Methods (FMs)

The use of FMs involves using (discrete) mathematical

notation to detail the precision of the properties or behaviour of

a software system. Formal Methods at the starting point usually

focus on formal specifications, which is a way to describe

system requirements formally. A popular formal specification

language is Z [14], based on a strongly typed fragment of

Zermelo-Fraenkel set theory [15] and first-order logic. A

formal specification describes what the system must do and not

how it should be achieved. A formal specification can reliably

be used to verify the information system functions as

determined by the customer. The systems’ properties ought not

to unduly constrain the specification of how the information

systems’ correctness is achieved [14].

International Conference on Advanced Technologies (ICAT’23)

170

An example of the state space of a simple banking system

specified in Z specification of the case used in this paper is

given below:

The basic types are [ACCOUNT, BALANCE].

 ATM_Banking

accounts : ℙ ACCOUNT

atm : ACCOUNT ⇸ BALANCE

accounts = dom atm

The state comprises two components, accounts and atm,

with types as indicated, as well as an invariant that constrains

accounts to be those held by the bank.

A state definition is usually followed by specifying an initial

state from which the system may start off. The specification of

an initial state of the system gives rise to a proof obligation (PO)

that such an initial state may be realised. Operations may be

defined on the state, resulting in further POs.

Discharging POs is seen as one of the strengths of FMs as

embodied by a formal specification. By discharging POs, a

specifier can show that the resultant system will behave as

expected and that undesirable properties are absent. Examples

of these are given in Section III. A formal specification also

assists the development team to discover aspects of the system

that may otherwise be hidden, thereby allowing developers to

identify challenges early on.

1) FMs Challenges

As indicated above, one of the main challenges of FMs is the

steep learning curve involved in getting to grips with the

underlying discrete mathematics and formal logic. Further

examples of the Z specification language appear in Section III,

and it should be evident that a fair amount of mathematical

maturity is needed in using Z.

Owing to their inherent complexities, formal specifications

may contain errors [16]. Amongst the complexities underlying

Z is that the schema calculus whereby schemas are combined

may create inconsistencies [17].

Some of the above challenges may be addressed through

adequate tool support for FMs, but such tools may turn out to

be as hard to use as the FM itself [18].

Despite the FMs challenges indicated, there are numerous

success stories of using FMs, most notably the famous CICS

(Customer Information Control System) specified in Z [19].

Given the respective advantages and disadvantages of each

of Agile and formal methods, we propose a combination of the

two techniques. Given the more technical nature of FMs

compared to Agile, we suggest the embedding of FMs in Agile

instead of the other way around.

C. Are Formal Methods Ready for Agile?

Reference [20] assesses the benefits of combining FMs and

ASD. They also assess the readiness of ASD to support FMs

techniques to have synergy in the processes. Reference [21]

describe FMs as a response to complexity by describing a

software system as a mathematical entity, allowing competent

stakeholders to verify and refute aspects of a requirements

specification, and they dispel the widely held view of FMs as a

software development methodology on its own (cf. Bowen &

Hinchey’s myths of FMs [22]), similar to the concerns

expressed by Corrigan et al. [13] for the project management

maturity level of Agile.

A misreading that [21] deals with is that FMs are only

effective as a post-factor verification. They also advise against

viewing Agile Software Development as a methodology that

can be implemented in all software development environments.

Each software development enterprise should adopt only the

ASD characteristics that are suitable for their environment and

their resources [23]. A fine blend of Agile and FMs may,

therefore, be the way forward.

Next, we investigate how FMs may be embedded as part of

the operations of Agile by analysing a hypothetical scrum case

study. The idea of using a case is part of a research strategy, as

indicated by the Saunders et al. research onion [24]. Case

studies may be categorized into three categories: explanatory,

exploratory, and descriptive [25]. Since we are investigating an

Agile-FMs interplay, our case study is exploratory.

III. CASE STUDY

Consider a scrum-based Agile development of a banking

application where customers can, amongst other operations,

deposit money into their bank accounts and make withdrawals,

together with receiving feedback from the system.

Having analysed the requirements as high-level use cases,

the scrum product owner (SPO) enters these into the Scrum

Product Backlog and consults with the system architects and

some senior software engineers to estimate and prioritize the

items. The high-level requirements are subsequently divided

into smaller-grained user stories. The SPO then schedules the

first Sprint Planning meeting with the Scrum team.

Tasks start at day 0, which represents the sprint planning day,

until day 28, which is typically the end of a Sprint, never taking

longer than one month [26].

Sprint 1 – Day 0 (S1.0)

The Scrum Master calls a planning meeting, with the

development team. Such meeting is indicated by Sprint 1, Day

0 – S1.0. This notation is reminiscent of Scheurer’s feature

notation [27]. Agile may not explicitly provide for an Sm.n –

Sprint m of Day n notation, but if not, then the introduction of

such notation may be a pseudo advantage of embedding FMs

in Agile.

Next, the team defines a number of user stories. For the

purposes of the example, we consider five user stories during

the S1.0 meeting (we further ignore details of inserting a bank

card, providing a pin, etc.) indicated in Table I:

TABLE I

SPRINT BACKLOG USER STORIES

No User-story

1 Select the account to deposit into or withdraw from.

2 Select the deposit or withdrawal option.

3 Enter the deposit amount.

International Conference on Advanced Technologies (ICAT’23)

171

No User-story

4 Enter the withdrawal amount.

5 Confirm transaction success.

Next, the team commissions a product backlog board

consisting of three columns – To do, Doing, and Done. Initially,

the backlog board is empty, which may be specified in Z

(assuming basic types [To_Do, Doing, Done]) as:

 Sprint_Backlog

to_do: To_Do

doing : Doing

done : Done

partition <to_do, doing, done>

where,

partition <to_do, doing, done> ≙

disjoint (to_do, doing) ∧

disjoint (to_do, done) ∧

disjoint (doing, done)

Since an item in the backlog board may appear in at most

one column, the components are pairwise disjoint. Observing

that the columns should be pairwise disjoint presents an

advantage of embedding FMs in Agile. With (pure) Agile, the

scrum members may not notice that column contents overlap,

i.e., the state invariant in schema Sprint_Backlog may be

violated. With a small number of items, this may not pose any

problems, but as the size of the board grows, this may become

harder to notice.

Following Z’s Established Strategy (ES), the next step is to

define an initial state of the board and subsequently show that

such a state can be realised [28].

 InitSprint_Backlog

Sprint_Backlog′

to do = ∅ ∧ doing = ∅ ∧ done = ∅

A proof obligation (PO) arises to show that the said initial

state may be realised [29]. This is an important point even

though the PO may be trivially discharged:

Proof:

⊢ Sprint_Backlog′ ⦁ InitSprint_Backlog

Hence, we need to show:

⊢ ∃ to_do′ : To_Do; doing′ : Doing; done′ : Done |
to_do′ = ∅ ∧ doing′ = ∅ ∧ done′ = ∅ (1)

The proof of (1) follows trivially since the empty set values

are specified in schema InitSprint_Backlog. The proof indicates

there is indeed an initial state from which the system may start.

Again, Agile may not necessarily pay attention to this important

aspect. We indicated above that Scrum user stories

continuously enhance the system as more becomes known

about the system through daily meetings. Discharging FMs

proof obligations, therefore, serves the same purpose.

Sprint 1 – Day 28 (S1.28)

The SPO assesses a prototype of the system to determine

whether the created user stories fulfil the requirements and

whether the features are comprehensively documented.

Suppose the SPO’s conclusions are:

The state space of Table 1 is given by (assuming basic types

[USER_STORIES]):

 User_Stories_____________________

stories: ℕ1 ⇸ USER_STORIES

Schema User_Stories indicates user-stories are numbered

using positive integers (i.e., starting from 1). This may be an

important observation since Sprint days are numbered from 0.

Developers and specifiers ought to be aware of these

considerations as part of boundary considerations (refer also to

the considerations on the deposit and withdrawal of amounts

elsewhere in this paper) and would be an advantage of using

FMs in Agile.

Next, we specify the five user stories as per schema

AddUserStories.

 AddUserStories

Δ User_Stories

stories′ =

{1 ↦ “Select the account to deposit into or

 withdraw from”,

 2 ↦ “Select the deposit or withdrawal option”,

 3 ↦ “Enter the deposit amount”,

 4 ↦ “Enter the withdrawal amount”,

 5 ↦ “Confirm transaction success” }

The formal specification of Table 1 could have followed

either of two routes: Initialise component stories′ as an empty

function (cf. schema InitSprint_Backlog, followed by a proof

that such an initial state can be realised, followed by an

operation like AddUserStories, or specify AddUserStories

directly as above. The considerations around these two options

are reminiscent of assigning a value to a variable in computer

memory or first checking whether the variable already contains

the value and, if so, do nothing. As before, the formal

specification makes us aware of these options earlier than the

standard completion of an Agile Sprint.

Next, suppose having evaluated the user stories, the team

indicates they do not have the capacity to complete user story

4, and because of that, part of user story 2 (the option to

withdraw an amount). Consequently, the SPO moves these to

the 2nd sprint.

Table II illustrates how sprints and user stories can be

tracked and managed as initially presented by the Product

Owner and changed on the backlog board, having moved user

stories 2 and 4 to the 2nd sprint.

International Conference on Advanced Technologies (ICAT’23)

172

TABLE II

TRACKING AND PRIORITISATION OF USER STORIES

User

Stories

Sprint

Ready
Priority Status Sprint

1 Yes M To do 1

2 No H To do 2

3 Yes H To do 1

4 No M To do 2

5 No L To do 1

Legend: M = Medium; H = High; L = Low.

Next, we formally specify Table 2, starting with an

appropriate state space.

 Prioritisation_User_Stories _____________

trackings: ℕ1 ⇸

 Sprint_Ready × Priority × Status × Sprint

We note that the Cartesian product in the above schema fixes

an ordering among the columns of the table, but in practice,

such ordering is probably immaterial. That said,

implementations of database systems usually impose an

ordering among table columns at the implementation phase. So,

the schema makes such an implementation decision explicit at

the specification phase already, while the Agile processes may

not draw attention to this aspect. This illustrates a further

advantage of embedding FMs in Agile.

The next step is to populate the schema as per the

information in Table 2:

 Populate_Prioritisation_User_Stories

Δ Prioritisation_User_Stories

(∀i: ℕ1 ⦁

 trackings(i).Status = “To do”

∧

 (if i ∈ {1, 3} then

 trackings(i).Sprint_Ready = “Yes”

 else trackings(i).Sprint_Ready = “No”)

∧

 (if i ∈ {1, 4} then trackings (i).Priority = “M”

 elseif i ∈ {2, 3} then trackings (i).Priority = “H”

 else trackings (i).Priority = “L”)

∧

 (if i ∈ {2, 4} then trackings (i).Sprint = “2”

 else trackings (i).Sprint = “1”)

The first version of Z [14] did not incorporate an if … then …

else … construct, but it was added in the 2nd edition of Spivey’s

Z user manual [30] to facilitate the user experience (readability,

usability) of Z. In the above, we further extended the syntax to

include an elseif as indicated. This may be a pseudo advantage

of using FMs in Agile and elsewhere in Computing.

Returning to the functionality of the banking system (state

space given by ATM_Banking above), we investigate what

might be gained by formalising some of the user stories,

starting with a customer depositing money into their account

(user stories 1, 2, 3, and 5), ignoring the complexities of user

story 2 having been moved to the 2nd sprint.

User-story Objective

As a bank customer:

I want to deposit cash into my bank account at an ATM;

So that I do not have to wait for the bank’s branch working

hours.

Acceptance criteria

1. Customer needs to enter a valid account to deposit cash.

2. System needs to validate the existence of the account

number.

3. System needs to give the customer an option to enter the

amount to be deposited.

The following schema formalises the user story.

 Cash_Deposit

Δ ATM_Banking

account? : ACCOUNT

deposit? : BALANCE

receipt! : RECEIPT

deposit? > 0 ⇒

 (∃ balance′ : BALANCE ⦁
 balance′ = atm(account?) + deposit? ∧

 atm′ = atm ⊕ {account? ↦ balance′} ∧
 receipt! = deposit?)

Assuming basic types [ACCOUNT, BALANCE, RECEIPT],

the account to deposit into, and the amount deposited serve as

input to the system. The system generates a receipt (user story

5) for the customer.

The existing balance is overridden (⊕) with the existing

balance incremented (deposit? > 0) by the amount. As may be

observed, the formal specification makes a number of

underlying assumptions clear that the scrum team might have

glossed over during this user story.

The overriding operator could be interpreted as whatever

amount is in the user’s account beforehand is simply replaced

by the amount beforehand plus the deposit made. This case is

like updating the value of a variable in memory discussed

earlier. Again, this consideration may not receive due

consideration by the scrum team using Agile only. Therefore,

possible ambiguities that existed between the system

requirements described merely in natural language are clarified

by the schema.

A further clarification is that a zero (0) amount may not be

deposited. The user story does not adequately specify this,

running the risk that an exception might be generated (thrown)

by the system.

The above observations should indeed emerge once the

design or programming phases are entered, but other design

decisions may have to be changed. The requirements elicitation

phase is regarded as being the most crucial and most

challenging. The consequences of getting this critical phase

wrong are far-reaching and can persist throughout the life of the

software system [31]. Formal specifications assist in eliciting

errors earlier during the system life cycle, thereby improving

system functionality.

International Conference on Advanced Technologies (ICAT’23)

173

Next, consider the user stories (1, 2, 4, and 5) involving a

withdrawal from an ATM.

User-story objective

As a bank customer:

I want to withdraw cash from my bank account through an

ATM;

So that I can have physical access to my funds after hours.

Acceptance criteria

1. Customer needs to have inserted a bank card and account

on the ATM.

2. System checks to see if the requested amount exceeds the

balance.

3. If so, the system displays the balance and asks the user to

enter a new amount.

4. If the amount entered is less than the account balance, cash

is dispensed, and the new balance is displayed.

Schema Cash_Withdrawal formalises the essence of the user

story.

 Cash_Withdrawal

Δ ATM_Banking

account? : ACCOUNT

withdrawal? : BALANCE

receipt! : RECEIPT

withdrawal? ≤ atm (account?) ⇒
(∃ balance′ : BALANCE ⦁
 balance′ = atm(account?) - withdrawal? ∧

 atm′ = atm ⊕ {account? ↦ balance′} ∧

 receipt! = balance′)

Amongst others, the acceptance criteria state, “System

checks to see if the requested amount exceeds the balance.” as

well as “If the amount entered is less than the account balance,

cash is dispensed, and the new balance is displayed.”. Between

these two criteria, it is not clear whether the case of withdrawal?

= 0 is allowed, similar to the case of depositing a zero amount.

The formal specification clarifies this by stating that a

customer may withdraw all the money in an account. Naturally,

bank policies may have to regulate these aspects. The formal

specification, therefore, elicits aspects that the scrum team

could have missed.

Next, we consider the following day of Sprint 1, labelled

Day 1.

Sprint 1 – Day 1 (S1.1)

The team gathers the next day, and the backlog board is

updated on the strength of the previous day’s work. Suppose

user stories 4 and 5 have been completed (Done), user story 3

is in process (Doing), and user stories 1 and 2 are still to start

(To Do).

TABLE III

SPRINT_BACKLOG_USER_STORIES STATUSES

Sprint

Column
User Stories

To Do

1: Select the account

to deposit into or

withdraw from.

2: Select the deposit

or withdrawal option.

Doing
3: Enter the deposit

amount.

Done
4: Enter the

withdrawal amount.

5: Confirm transaction

success.

Formally Table III may be specified by:

 Sprint_Backlog_User_Stories

Δ Sprint_Backlog

(∀i : [1 .. 5] ⦁

 if i ∈ {1, 2} then trackings(i).Status = “To Do”

 elseif i ∈ {4, 5} then trackings(i).Status = “Done”

 else trackings(i). Status = “Doing”)

As before, a proof obligation arises from schema

Sprint_Backlog_User_Stories, and it is to show that the

backlog board remains a partition, i.e., none of the entries

appears in more than one cell in Table III, thereby supporting

an FMs advantage mentioned earlier.

Naturally, the 28-day sprints continue until the project is

completed or until the 28 days come to an end. If, after day 28,

the project is not completed, the process continues.

Suppose next the scrum team arrives at the last day of the

first sprint – day 28.

Sprint 1 – Day 28 (S1.28)

The SPO assesses a prototype of the system to determine

whether the created user stories fulfil the requirements and

whether the features are comprehensively documented.

Suppose the SPO’s conclusions are:

• User stories 1, 2, 4, and 5 are completed to expectation.

• User-story 3 remains open owing to technological

challenges (essentially a defect), as indicated in Table IV.

It is, therefore, placed on hold for Sprint 2.

Table IV shows the open defects, resulting in user story 3 not

being completed on time.

TABLE IV

OPEN DEFECTS LIST

Defect

ID
Description Status

User-

story

#3 The user can enter the

deposit amount manually,

but ATM cannot verify

the amount in real-time.

Open 3

International Conference on Advanced Technologies (ICAT’23)

174

TABLE V

ADVANTAGES OF EMBEDDING FORMAL METHODS IN SCRUM

Concept Advantages

1. Notation for a specific day within a
Sprint was developed.

The need to identify specific days from 0 to 28 (4 weeks) within specific sprints led to a pseudo
advantage of FMs. A notation Sm.n for sprint m, day n was developed. For example, S1.1
denotes Sprint 1, day 1.

2. State space as captured by the Z
schema for a Sprint Backlog

The backlog board is defined by three columns, namely, To_Do, Doing, and Done. Formalizing
the board revealed that the three components of the Sprint Backlog are pairwise disjoint.

3. Proof of initial Sprint Backlog
The proof shows how an initial state of the system may be realised, an aspect that Scrum
developers may not necessarily pay attention to.

4. Z Schema 4 State Space for User
Stories

This schema shows that using FMs makes it explicit that user stories are numbered sequentially,
starting from 1. This is an important consideration since days in a Sprint are numbered from 0.

5. Z schema state space user-story
Prioritization

The schema presents a cartesian product that fixes an ordering among the columns of the table.
Attributes of a record in relational databases are not necessarily ordered, but the columns in the
prioritization of the user stories (Table 2) appear to be ordered. The Z specification makes this
explicit through the Cartesian product as a type.

6. Extending notation of conditional
predicates – if/else/elseif
statements

We have extended the predicate notation of Z by adding conditional statements in the form of
if/else/elseif statements, as these usually occur in procedural and executable software
development languages.

7. Identification of boundary
conditions – Z schema cash
deposit and cash withdrawal

Boundary conditions not necessarily identified during a Scrum sprint may become explicit

through formally specifying conditions.

Two cases arose:

[1] Users may not deposit a zero amount (deposit? > 0).

[2] With respect to a cash withdrawal, the schema specifies that a user may empty an account,

e.g., withdrawal? ≤ atm(account?). The amount requested may indeed equal the amount

available.

These conditions may be missed in the brevity of natural language’s user stories and result in

defects.

Typically, user story 3 could remain open since the ATM

does not embed the technology to count and verify the physical

amount of money deposited by the user in real-time (banks

usually have two officials who together open an ATM the next

morning and manually verify each deposit made). This may be

registered as a defect and allocated a defect number, e.g., #3.

Generally, however, defects and user stories would not

resemble a one-to-one mapping.

Table IV may be formalised by the following two schemas

(basic types indicated may be new, or inferred from earlier

schemas):

 Open_Defects _____________

defect_id: ID

description: DESCRIPTION

status: STATUS

s: STORY_ID

Correspondingly, Table IV could be specified as:

 Add_Open_Defects

Δ Open_Defects

defect_id = 3

description =

 “ATM unable to verify deposit amount in real-time”

status = “Open”

s = 3

Schema Add_Open_Defects is just for one specific case

(defect) and could be enhanced to cater for more defects than

just a single case. The defect will remain open until at least the

next sprint.

While Add_Open_Defects does not convey any information

not already in Table IV, it nevertheless adheres to an important

formal specification design principle, namely, “Maximise

communication with the user of the specification.” [28].

In the following section, we summarise the value proposition

of embedding FMs in Agile.

IV. ADVANTAGES OF EMBEDDING FMS IN SCRUM

Having observed the embedding of FMs as part of the above

Agile case, we summarise as indicated in Table V.

International Conference on Advanced Technologies (ICAT’23)

175

The foregoing information, together with the summary in

Table V, meets our objective stated at the end of Section I.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced Agile, as captured by Scrum, as

a lucrative software development methodology. Agile hastens

the software development process yet it may lead to challenges,

especially with respect to mission-critical software

development. The lack of upfront and agreed-upon

requirements may incur ambiguities with respect to accurately

capturing user requirements. The high level of interaction

among Scrum members is, on the one hand, desirable, while on

the other hand, it may result in many interruptions in the

working day of such members.

Formal methods have been introduced as a way of producing

reliable or at least highly dependable software using discrete

mathematics and logic. FMs, however, incur challenges of their

own, amongst others, a perceived steep learning curve in

mastering the underlying mathematical aspects.

The above observations led to the work reported above,

namely embedding FMs in Agile Scrum Sprints. We embarked

on a case study approach and formalised Scrum artefacts and

processes, and in doing so, identified some of the advantages of

embedding FMs in Agile. These are captured in Table V.

With respect to future work, Table V could be used as a

starting point for further theoretical and empirical studies on

this topic, aimed at developing a framework for embedding

FMs into Agile Scrum. That said, Table V could be viewed

already as a framework by some [32]. Either way, the

framework could be validated through an industry survey

among Agile- and FMs practitioners. Different methodological

survey instruments could be used to validate these findings by

developing measurement scales.

ACKNOWLEDGEMENT

This work is based on the research supported in part by the

National Research Foundation of South Africa (Grant Number

SRUG2204214078).

REFERENCES

[1] S. Baltes and P. Ralph, Sampling in software engineering research: A

critical review and guidelines. Empirical Software Engineering, 27(4),

pp.1-31, 2022.
[2] C.A. Hatcher, A Conceptual Framework for Flight Test Management

and Execution Utilizing Agile Development and Project Management

Concepts. 812th Test Support Squadron, 812 TSS/ENTI Edwards
United States, 2019.

[3] G, Kim, J. Humble, P. Debois, J. Willis, and N. Forsgren, The DevOps

handbook: How to create world-class agility, reliability, & security in
technology organizations. IT Revolution, 2021.

[4] L. Traini, Exploring Performance Assurance Practices and Challenges

in Agile Software Development: An Ethnographic Study. Empirical
Software Engineering, 27(3), pp.1-25, 2022.

[5] B. Moyo, The contingent use of systems development methodologies in

South Africa, Doctoral dissertation, North-West University (NWU),
South Africa, 2021.

[6] K. Beck et al., Manifesto for Agile Software Development, 2016.

Available online at: http://agilemanifesto.org/. Accessed 27 April 2023.
[7] J. Highsmith, Agile Software Development-Why it is Hot. Extreme

Programming Perspectives, M. Marchesi, et al., Editors, pp.9–16, 2003.

[8] V. Szalvay, An Introduction to Agile Software Development. Danube
Technologies Inc., 2004.

[9] J.E. Tomayko, Engineering of unstable requirements using agile
methods. In International Conference on Time-Constrained

Requirements Engineering, September 2017.

[10] X. Franch, C. Gómez, A. Jedlitschka, L. López, S. Martínez-Fernández,
M. Oriol and J Partanen, Data-driven elicitation, assessment, and

documentation of quality requirements in agile software development.

In International Conference on Advanced Information Systems
Engineering, pp. 587–602. Springer, Cham, June 2018.

[11] J.A. van der Poll, Problematizing the Adoption of Formal Methods in

the 4IR–5IR Transition. Applied System Innovation, 2022; 5, 127, 2022.

Available online at: https://doi.org/10.3390/asi5060127. Accessed on 10

April 2023.

[12] K. Bhavsar, V. Shah, and S. Gopalan, Scrum: An agile process
reengineering in software engineering. International Journal of

Innovative Technology and Exploring Engineering, 9(3), pp. 840–848,

2020.
[13] M.J. Corrigan, J.A. van der Poll, and E.S. Mtsweni, E.S., The Project

Management Information System as Enabler for ICT4D Achievement at

Capability Maturity Level 2 and Above, Communications in Computer
and Information Science (CCIS), Springer, 933, pp. 295 – 312, 2019.

[14] J.M. Spivey, The Z notation: A Reference Manual, Prentice Hall,

Englewood Cliffs, 1989.
[15] H.B. Enderton, Elements of set theory. Academic Press, 1977.

[16] D. Parnas, Really Rethinking 'Formal Methods'. Computer. 43, pp. 28–

34, 2010, 10.1109/MC.2010.22.
[17] A. Bayode, J.A. van der Poll, and R.R. Ramphal, 4th Industrial

Revolution: Challenges and Opportunities in the South African Context.

Conference on Science, Engineering and Waste Management (SETWM-
19), pp. 174 – 180, 18 – 19, November 2019.

[18] J.G. Ackermann and J.A. van der Poll, Reasoning Heuristics for the

Theorem-Proving Platform Rodin/Event-B, 2020 International
Conference on Computational Science and Computational Intelligence

(CSCI), Las Vegas, NV, USA, 2020, pp. 1800-1806, DOI:

10.1109/CSCI51800.2020.00332.
[19] L. Freitas, J. Woodcock, and Y. Zhang, Verifying the CICS File Control

API with Z/Eves: An experiment in the verified software repository,

Science of Computer Programming, 74(4), pp. 197-218, 2009, ISSN
0167-6423. https://doi.org/10.1016/j.scico.2008.09.012.

[20] M. Gleirscher, S. Foster and J. Woodcock, New opportunities for

integrated formal methods. ACM Computing Surveys (CSUR), 52(6),
pp.1-36, 2019.

[21] P. G. Larsen, J.S. Fitzgerald, and S. Wolff, Are formal methods ready

for agility? a reality check. In FM+AM 2010: Second International
Workshop on Formal Methods and Agile Methods, Newcastle

University.

[22] J.P. Bowen and M.G. Hinchey, Seven more Myths of Formal Methods,
IEEE Software, pp. 34–41, 1995.

[23] G. O'Regan, Mathematics in computing. Springer International

Publishing, 2020.
[24] M.N.K. Saunders, P. Lewis, and A. Thornhill, Research Methods for

Business Students, 8th Edition, London, UK.; Harlow, Pearson, 2019.

[25] Y. Cui, I. Zada, S. Shahzad, S. Nazir, S.U. Khan, N. Hussain, and M.
Asshad, Analysis of service-oriented architecture and scrum software

development approach for IIoT. Scientific Programming, 2021.

[26] W. Zayat and O. Senvar, Framework study for agile software
development via Scrum and Kanban. International journal of innovation

and technology management. June 24, 2020, 17(04):2030002.
[27] T. Scheurer, Foundations of computing: System Development with Set

Theory and Logic, Addison-Wesley, 1994, ISBN 0-201-54429-6.

[28] J.A. van der Poll and P. Kotzé, Enhancing the Established Strategy for
Constructing a Z Specification. South African Computer Journal

(SACJ), Number 35, pp. 118 - 131, December 2005.

http://agilemanifesto.org/
https://doi.org/10.3390/asi5060127
https://doi.org/10.1016/j.scico.2008.09.012

International Conference on Advanced Technologies (ICAT’23)

176

[29] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal

Specification and Z, Second edition, Prentice-Hall, 1996.
[30] J.M. Spivey, The Z notation: A Reference Manual, Second edition.

Hemel Hempstead, Prentice Hall, 1992.

[31] S.K. Pandey and M. Batra, Formal Methods in Requirements Phase of
SDLC. International Journal of Computer Applications, 70(13), pp.7-

14, 2013.

[32] J.A. van der Poll, A Research Agenda for Embedding 4IR Technologies
in the Leadership Management of Formal Methods, The 2022

International Conference on Computational Science and Computational
Intelligence (CSCI’22), pp. 1845 – 1850, Las Vegas, USA, 14 – 16

December 2022.

