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Abstract — To prevent unplanned machine downtime in 

production, machine conditions can be monitored and even 

predicted using condition and failure models based on current 

machine and process data. As most of these models are data-

intensive, machine users often do not have enough data to develop 

these models themselves and want to collaborate with other 

companies. Since these models often require critical and classified 

machine and process data, which could be extracted from the 

models using attacks such as model inversion, sharing existing 

models between companies is not an option as it leaves one party 

vulnerable. Privacy preserving technologies such as homomorphic 

encryption, differential privacy, federated learning and secure 

multi-party computation can help overcome this problem. With 

the help of these approaches, there is no need to transmit sensitive 

data unencrypted to third parties in order to cooperate and take 

advantage of high-performance models. The aim of this paper is 

to first summarize the current state of research on privacy-

preserving technologies in production, and then to provide a 

simple to use evaluation method and criteria. The focus is on 

enabling production workers to make informed decisions and 

exploit the full potential of existing data without the need for prior 

knowledge of privacy-preserving technologies. Finally, the 

evaluation method is validated using two example use cases in a 

production environment and the results are discussed. 

 
keywords — privacy preserving technologies, production data, 

homomorphic encryption, federated learning, decision support 

I. INTRODUCTION 

Operational and process data from machines and plants is a 

valuable asset that can form the basis for innovative data-based 

services. To develop solutions that help make not only 

individual processes, but entire industries and value chains 

more efficient and sustainable, innovative collaboration across 

organisational units and company boundaries is required. 

Concerns about privacy and security often mean that this 

potential remains untapped [1].  

One solution to this privacy and security problem is the use 

of privacy-preserving machine learning approaches [2], such as 

homomorphic encryption, federated learning, differential 

privacy, and secure multi-party computation. However, these 

new approaches are unfamiliar to most production workers 

faced with the challenges of using new data-based services. 

They are experts in their respective fields, but are often not 

trained or informed about these new ways of securely 

transferring data between organisations. Even if the employee 

has heard of one of the technologies, he or she is still faced with 

the problem of whether this approach is the right one for the 

problem at hand, or whether another approach might produce 

better results [3]. 

Therefore, the goal of this paper is to first summarise the 

current state of research on privacy-preserving technologies for 

production data, with a focus on inter-enterprise data transfer, 

and then to provide an easy-to-use method that can be used to 

evaluate specific use cases in order to provide decision support 

on whether and which of these technologies can be used. The 

focus of the methodology is to enable production staff with no 

prior knowledge of privacy technologies to make informed 

decisions and realise the full potential of existing data. In 

addition to the methodology, criteria are developed that are 

necessary and must be followed for the selection and design of 

the technology. Finally, the method is validated using two 

example use cases in a production environment and the results 

are discussed. 

II. STATE OF RESEARCH  

The operation of machines, which today are often equipped 

with a large number of sensors, generates data that, when 

combined with other production data, can provide valuable 

insights for maintenance. For example, this data can be used to 

identify that certain events have occurred and why they have 

occurred, or to predict when certain events will occur again [4]. 

In many cases, this data is particularly worthy of protection, for 

example, because it contains intellectual property [5]. In this 

situation, confidentiality preserving machine learning 

approaches are the means of choice to gain insights without 
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compromising the confidentiality of the data. For example, 

homomorphic encryption (HE) allows machine data to be 

analysed with third-party models without losing confidentiality. 

Federated Learning (FL) allows machine operators to 

collaborate to build an analytics model without individual 

machine operators having to share their data. Differential 

Privacy (DP) can be used to prevent confidential machine data 

from being extracted from published models. To compare 

metrics between companies without the need to publish an 

individual value, Secure Multi-party Computation (SMC) can 

be used. 

 

A. Homomorphic Encryption 

An encryption method is called homomorphic if there are 

operations on secret texts that correspond to additions and/or 

multiplications on the associated plaintexts. In contrast, if 

secret texts of non-homomorphic encryption schemes are 

manipulated without knowledge of the key, this will almost 

certainly result in invalid or randomly appearing plaintexts. In 

the case of "non-malleable" encryption schemes, this is even a 

necessary condition. Most early homomorphic encryption 

schemes supported either only multiplications or only additions 

on secret texts. Fully homomorphic encryption schemes allow 

arbitrary computations on secret texts [6]. This means that - at 

least in theory - any computation that can be performed on 

plaintext can also be performed on secret text. The first fully 

homomorphic encryption scheme introduced by [6] was highly 

inefficient and thus unsuitable for practical applications. Over 

the last few years, the field has experienced rapid development, 

including numerous performance optimizations [7], [8], [9], 

[10], [11], harnessing floating-point numbers [12], [13], or 

efficiently evaluating arbitrary unary functions [14]. In addition, 

a large number of software libraries exist today that enable the 

implementation of concrete use cases, e.g. SEAL, PALISADE, 

HElib, Concrete, TFHE, and Lattigo. 

Homomorphic encryption therefore lends itself to 

implementing trusted inference use cases: Input data (e.g., 

machine data) for an machine learning model can be 

homomorphically encrypted and passed to a model owner, who 

applies his model to it and sends the homomorphically 

encrypted output data back to the input data owner. Thus, the 

data owner does not have to reveal input or output data to 

anyone, and at the same time, the confidentiality of the machine 

learning model is also preserved. In TSM homomorphic 

encryption is used in the inference context. 

B. Differential Privacy 

Differential Privacy [15], [16] is a formalism for quantifying 

the degree to which the privacy of each instance of a dataset is 

preserved when the output of a data analysis algorithm is 

released. DP guarantees that based on the presence or absence 

of an instance's data in the dataset, an attacker is unable to draw 

conclusions about individual instances from the released output 

of an analysis algorithm. This guarantee is achieved by 

randomizing the data analysis process. In the machine learning 

context, randomization is accomplished either by adding 

random noise to the input or output of the machine learning 

algorithm, or by modifying the learning algorithm itself. The 

datasets may contain sensitive information that needs to be 

protected from so-called model inversion [17], [18] and 

membership inference [19] attacks, among others. This goal is 

addressed in the context of DP [20], [21]. The classical 

approach to approximating a real-valued function with a DP 

mechanism is to add noise calibrated to the global sensitivity of 

the function to the function output [22]. However, this 

introduction of noise into an algorithm generally results in a 

loss of accuracy. Since DP is preserved in any further 

processing of the released output data, accuracy can be 

increased by ‘denoising’ the output using statistical estimation 

theory [23]. The iterative nature of machine learning algorithms 

poses another challenge, as iterations result in a high 

cumulative loss of privacy and therefore a large amount of 

noise must be added to compensate for the loss of privacy. To 

keep track of the loss of privacy arising from successive 

iterations, Abadi et al. [20] propose a moment accounting 

method for compositional analysis. The moment-accounting 

method is based on the properties of privacy loss random 

variables. Because the method provides a tight bound on the 

privacy cost of multiple iterations, allowing for a higher privacy 

budget per iteration, it has been successfully applied to 

confidentiality-preserving variational Bayesian methods [24]. 

Distributed deep learning [25], [26], based on distributed 

stochastic gradient descent (SGDs) methods, is a solution 

approach to preserve the privacy of each participant and yet 

learn from the private data of other participants. 

A number of libraries are available for practical DP-

supported implementations: On the one hand, using libraries 

such as Google's DP library or the PyDP based on it for direct 

computations of ε- or (ε, δ)-DP statistics on datasets, and on the 

other hand, using the machine learning focused libraries 

TensorFlow Privacy and Opacus , which provide DP-SGD. 

If a machine operator offers to train a machine learning 

model based on training data it has collected, it must anticipate 

that attempts could be made to extract the original training data 

from the final model. DP methods provide protection against 

such extraction attempts and should therefore be used when 

mission-critical data is used to build machine learning models 

that are subsequently made available to other parties. In TSM, 

DP is used in the context of training models that are published 

following training. 

C. Federated Learning 

The creation of machine learning models is computationally 

intensive and requires large amounts of memory. To enable the 

creation of increasingly complex models on ever larger datasets, 

models and data are fragmented to distribute the training 

process across multiple devices [27]. However, distributed 

learning also requires a central coordinator with full access to 

all data and all devices. If the goal is the creation of shared 

models by multiple participants, supported by public and 

internal information of each participant, distributed learning is 

not a viable approach because the private data cannot be shared. 
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FL [28] is an extension of distributed learning that addresses 

this problem and is characterized by three features [29]: 

• Massive distribution: no single node has a significant 

portion of the data. 

• Non-IID data: The data cannot be assumed to have an 

identical and independent distribution (IID) across all 

participating nodes. 

• Unbalanced data: the amount of data may differ by orders 

of magnitude between any two nodes. 

 

Jakub Konečný et al. [29] have shown that with appropriate 

federated optimization algorithms that only convey model 

update information, similar performance can be achieved while 

keeping the training data private.  

In the FL context, since all participants are aware of the 

global model, malicious participants can also extract 

information about other participants' training data from the 

global model, e.g., using model inversion [17], [18] and 

membership inference attacks [19]. Protection against these 

threat scenarios can be provided by the use of DP methods [30]. 

From model updates submitted by participants to the 

coordinator, e.g., in the form of batch gradients, a malicious 

coordinator could attempt to reconstruct training data from the 

batch of the respective participant. Effective protection against 

this is provided by secure distributed aggregation of model 

updates using secure multi-party computation tools [31]. 

Recent work on FL often focuses on the technological 

aspects of efficient cross-device learning scenarios with edge 

devices such as smartphones that can drop out of training 

sessions at any time, while an essential requirement is the need 

for privacy [32]. Research exists on organizational issues such 

as shared model ownership through distributed ledgers [33] and 

malicious attacks or addressing data quality issues in 

distributed collaborative learning, but these are 

underrepresented [34]. There is a lack of real-world 

experiments, as most studies are conducted on simulated use 

cases. 

Meanwhile, a variety of FL libraries also exist, with 

TensorFlow Federated , FedML , FATE , Intel's OpenFL , and 

IBM's FL library among the best known. 

FL provides a suitable framework for the decentralized 

creation of machine learning models: For example, multiple 

machine operators can collaboratively train a machine learning 

model into which each individual machine operator can 

incorporate its own machine data, but without having to directly 

hand it over. This can be coordinated either by a third party (e.g., 

the machine manufacturer or its own insight provider) or by the 

group of machine operators themselves. 

D. Secure Multi-party Computation 

Secure Multi-party Computation is an area of cryptography 

and information security that allows multiple parties to perform 

a computation together without revealing their confidential data 

to each other [35]. The main goal of SMC is to provide a secure 

way to process private information from multiple parties 

without one party knowing or making available the other's data. 

In traditional computational environments, collaboration 

among multiple parties would normally require the exchange of 

data, which could compromise privacy. However, with SMC, 

these parties can securely cooperate by using a cryptographic 

protocol structure to share their data and jointly perform a 

desired computation without the actual raw data being visible 

to the other parties [36]. 

The basic idea behind SMC is that each participant retains 

its own private data, but still receives information that reflects 

the result of the joint computation. This is done in a way that 

ensures that even if some parties are malicious or try to obtain 

information they should not know, the privacy of the other 

parties is preserved [35]. 

Secure Multi-party Computation has many practical 

applications, especially in areas where privacy and 

confidentiality are important. Examples include [37]: 

• Data analytics privacy: companies or organizations can 

combine and analyze their data to gain insights and 

trends without disclosing or sharing their sensitive data. 

• Secure auctions: Auctions can be held where bidders' 

bids remain encrypted, but the winning bid can still be 

determined without knowing the actual bids. 

• Secret ballots: Individuals may conduct secret ballots 

where the results are revealed without the individual 

votes being known. 

To assist in the implementation of SMC, a lot of libraries 

exist. Some of the better known are ABY, CrypTen, JIFF, 

Moose, MP-SPDZ and Sharemind. A list of current frameworks 

has been compiled by Rotaru [38].  

III. EVALUATION METHOD 

To find which technology is suitable for a particular 

application, the use case must first be defined. It is helpful to 

record the use case in writing and to visualise it. When 

recording, it is important to ensure that all stakeholders, both 

internal and external, are included. It is advisable to record the 

use cases along the existing data flows so that no stakeholder is 

forgotten. It is also important to consider the interests of each 

stakeholder in the specific use case and where there are 

concerns about data or information that needs to be protected. 

This may be process or machine data, but it may also be the 

machine learning model itself that is deemed worthy of 

protection. For example, a machine manufacturer may also be 

a supplier of wear models. In this example, the users of the 

machine are the users of the model. The intention of the 

supplier is to rent out his model for profit without giving the 

users enough information to reproduce the model. 

Once the use case has been clearly and comprehensively 

described, and all stakeholders and their respective interests 

and security concerns have been noted, the technology 

selection can begin. In order to support technology selection 

without requiring expert knowledge of individual technologies, 

a series of simple yes or no questions were developed to guide 

the process. Two different methods were chosen to make the 

selection process clearer. The first method, shown in figure 1, 

is written from the perspective of a user who has data and wants 

to use it in a production environment. The second method, 
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shown in figure 2, approaches the subject from the point of 

view of a model provider who wants to examine how the 

machine learning model can be marketed to potential users. 

A. Evaluation for Operators 

If a production worker is unsure about which technology to 

use to analyse existing data, the decision process shown in 

figure 1 can be used. Simple yes/no questions are used to clarify 

whether it is known which components are involved and 

whether simple statistical data is required or whether the 

existing data needs to be processed using a more complex 

model. If only simple data is needed and confidential 

transmission is required, then SMC is suitable for the use case. 

If more complex models are required, the first step is to 

determine whether possible models already exist. If so, these 

can be used with the help of HE, if necessary, so that no 

confidential data needs to be disclosed. If no model exists, a 

model can be created using FL. This can be coordinated either 

by the operator or, as in most cases, in cooperation with the 

component manufacturer who coordinates the FL. Each point 

in the decision methodology describes how to proceed even if 

the conditions of the current use case are not suitable for one of 

the technologies. These range from the recommendation to first 

identify the critical components using risk management 

methods, to the recommendation to build a model yourself, 

either with your own data or with externally sourced data, or to 

simply communicating the data unencrypted to a model owner 

if the level of needed confidentiality is not high. 

B. Evaluation for model providers 

From the point of view of the manufacturer or distributor of 

a machine learning model, different technologies can be used 

to maintain confidentiality. In order to identify information 

about machinery and equipment, it must first be clarified what 

the critical components of the equipment are. Once this is 

known, the next step is to determine whether a good enough 

model already exists to process the machine data. Answering 

this questions diverge the methods into the HE and the FL track. 

If a model already exists, it must be assessed whether the 

data used to create the model or the model itself is worthy of 

protection. If the original data used to create the model is 

worthy of protection, DP can be used to assess the risk of the 

original data becoming public either through the use of the 

model or through targeted attacks. In addition, the supplier of 

the model needs to consider whether the model can be shared 

with the customer or whether the model should be protected 

itself. If critical customer data is also processed in the model, 

HE is a good choice to protect both the model and the customer 

data. 

If a suitable machine learning model does not yet exist, it 

either must be created using the own data or, if this is not 

possible, a model must be created with the help of collaborators. 

If there is not enough data to create an own model, it must be 

checked with possible cooperation partners whether the raw 

data can be collected to create a model or whether the required 

data is private. If the data needs to be protected, FL is an option 

to jointly create a model. 

C. Additional criteria to be considered 

In addition to the general selection of the privacy preserving 

technology, other criteria and restrictions must be considered in 

each individual use case. The most important selection criteria 

are summarized so that they can be considered by a production 

worker without experience in this area of technology. 

 

Fig. 1 Privacy preserving technology evaluation method for operators 
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Most preservation technologies require that participants 

have sufficient computing power and communication capacity 

to participate efficiently in the learning or data exchange 

process. Both the computation of model updates and the 

exchange of these updates between participants, as well as the 

encryption and decryption in HE, can be time consuming, 

especially in the case of large data sets or slow network access. 

 It is important to note that not all data in the cross-

enterprise communications needs to be encrypted. Often both 

critical process and machine data, which must not be made 

public, and general data, such as the current temperature in the 

production hall, flow into machine learning models. In many 

cases, processing time and hardware requirements can be 

reduced by including only the critical data with the appropriate 

technology.  

Learning models require that the participants have sufficient 

and relevant data for the model to be effectively trained. If the 

data within the participant population is highly variable or very 

limited, this can affect the performance of the model. If the data 

submitted is encrypted, as is the case with HE, the model cannot 

be further trained. If this is a requirement for the use case, HE 

cannot be used. 

Some privacy preserving technologies, notably SMC and HE, 

support only a limited number of mathematical operations. 

Some operations may be inefficient or not supported at all, 

limiting their use in certain machine learning applications. This 

should be taken into account when choosing which technique 

to use. If a new machine learning model is being created, this 

can be taken into account when creating the model to respond 

to possible future coding requirements.  

IV. VALIDATION 

The two evaluation methods presented were discussed with 

experts from the production environment and validated using 

different use cases.  

In one use case, a wear model was needed for a critical 

component in order to better plan expensive and time-

consuming maintenance. However, the information required to 

predict wear was proprietary and could not be shared with third 

parties. For this use case, the Operator evaluation method was 

used. Using this method, the employee deduced on his own, 

without any further information, that HE was a suitable 

technology for his use case. 

In another use case, a machine manufacturer wanted to 

develop a wear model, but did not have enough data to develop 

the model on his own. The users of his machines did not want 

to share the necessary data. In this case too, the machine 

manufacturer's employee was able to use the  Provider 

evaluation method to identify FL as a suitable technology for 

his use case without any further information. 

V. CONCLUSIONS AND DISCUSSION 

After an overview of the current state of the art in privacy-

preserving technologies, two methods were presented that 

allow an user and a provider without expertise to easily make a 

pre-selection of the appropriate technology. Based on this, the 

most important criteria for further selection were described. 

The validation of the methods with experts has shown that the 

aim of providing simple methods that can be used by people 

outside the field has been achieved. However, the discussions 

also showed that this decision support tool can only be a start 

and that there is still much to be done in the area of usability 

and user-friendliness of privacy preserving technologies. 

Fig. 2 Privacy preserving technology evaluation method for model provider 
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