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Abstract— Vibration analysis is one of the most important aspects 

in the design of structures and mechanical systems, among others, 

subject to dynamic loads. As well as for the analysis of failures 

caused by vibratory aspects.  A good performance of an industrial 

system is often associated with the availability of mathematical 

models of the dynamic behaviour of the system. In some situations, 

the complexity of the processes makes it difficult to have models 

that help us to analyse these processes. This paper proposes the 

use of knot theory, which is a topological tool, for vibration 

analysis. This topological tool, in this case, associates a topological 

invariant when there is a drastic change in vibrations. The present 

work is based on the fact that it is well known that the equations 

representing harmonic motion generate Lissajous figures.  In knot 

theory, there are several classifications of knots, one of these 

classifications is known as Lissajous knots. The use of this tool is 

shown in the supposition that we have a system represented by 

three equations of the form 𝒇(𝒕) = 𝑨𝒄𝒐 𝒔(𝑩𝒕 + 𝑪), where with the 

indicated parameters it generates a knot (being its nominal value). 

Making a change in the phase, which represents a fault, generates 

a different knot than the nominal knot. One of the advantages of 

this proposed method is that it is not necessary to have the model, 

and one of the disadvantages by nature of this method is that three 

signals are required to use this topological tool.  
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I. INTRODUCTION 

Vibrations are one of the most common and important 

aspects of life. Natural phenomena, our own body, as well as 

mechanisms, involve some kind of vibratory motion [1],[2]. 

Robert Hooke was the first to discover and unveil vibratory 

motion by a vibrating glass plate [3]. From here, there were 

many pioneers in vibration analysis, such as Daniel Bernoulli, 

who was the first to formulate a differential equation for the 

vibrational motion of a beam. Leonhard Euler made many 

advances on the elastic curves through his investigations of the 

shape of elastic beams under various loading conditions [4]. 

From the investigations of Bernoulli and Euler, what is known 

as the Bernoulli-Euler beam theory is derived, this theory is 

commonly used to solve engineering problems. As well as, 

Pochhammer and Chree [5], who were the first to investigate 

for the first time an exact formulation of the beam problem in 

accordance with general elasticity equations. Joseph Fourier 

worked on the decomposition of periodic functions, which is an 

infinite sum of combinations of sines and cosines, this 

decomposition is known as Fourier series [6], [7]. The Fourier 

series is used to pass a signal in the time domain to the 

frequency domain and vice versa. This methodology is the most 

commonly used for vibration analysis. 

 

Vibration analysis can be defined as a process of monitoring 

vibration levels and studying the patterns of those vibrations. 

This analysis is very important to measure the vibrations and 

frequencies of the machinery and then use that information to 

analyse the health status of the machines and their components 

[8], [9]. Machines are made up of various components that 

work together to achieve a certain objective.  The vibrations 

generated in the machines come from each of its components. 

Given the complexity of most machines and their vibration 

signals, it is necessary to convert them into simpler signals in 

order to analyse and interpret their patterns [10], [11]. This is 

achieved by transforming the signal in time to the frequency 

domain through the Fast Fourier Transform (FFT). For 

practical reasons, industries use instruments that measure and 

analyse vibrations, which provide frequency spectra and the 

magnitude of their parameters.  

 

When talking about vibration analysis, one of the important 

parameters is phase. Phase is a relative time difference between 

two signals measured in units of angle and not time [8], [9]. 

Phase measurement is used to decipher machine faults such as 

misalignment and unbalance.  It only works if the two signals 

being compared have the same frequency. Here are some 

examples of how phase can help to analyse vibrations: Phase 

can be used to identify machine frame distortion, detect cocked 

bearings and bent shafts or detect loose joints on structures and 

bending or twisting due to weakness or resonance, among 

others [8], [9]. 

 

Knot theory is the branch of topology that studies the 

behaviour of three-dimensional structures without intersections 

and their invariants [12]. In the late 1970s and early 1980s, knot 

theory was introduced to the analysis of dynamical systems. 

R.F. Williams provides the concepts of knot theory to analyse 
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the topological complexity of Lorenz attractor trajectories [13]. 

From the point of view of dynamical systems, a knot can be 

defined as a simple closed curve generated by a three-

dimensional trajectory. Knots can be generated by a third-order 

ordinary differential equation, by the set of three equations 

representing a system, or by the set of three time series of a 

system [14], [15]. Topologically, the generated knots can be 

represented as a global solution of the system in 𝑅3 [14], [15]. 

This theory aims to differentiate one knotted system from 

another, this tool makes it possible to know if two trajectories 

in 𝑅3 have the same topological structure. 

 

It is well known that if an object vibrates harmonically in 

two directions, plotting these two signals generates what are 

known as Lissajous figures. Lissajous figures are used to 

establish the frequency ratio or relative phase between two 

harmonic signals [16], [17]. Relative phase is the most practical 

way to measure phase on a machine [8], [9]. In knot theory, 

knots are classified in several ways, one of these classifications 

is known as Lissajous knots [18], [19]. This knots are produced 

by the set of three equations of the form f(t) = A cos(Bt + C). 

In this work, the use of knot theory for the analysis of harmonic 

vibrations in three directions or dimensions is proposed. In this 

particular case, the use of this theory is shown, assuming that 

we have a system represented by three equations of the form 

f(t) = A cos(Bt + C), where with the indicated parameters it 

generates a knot (being its nominal value). Making a change in 

the phase, which represents a fault, generates a different knot 

than the nominal knot. 

II. PRELIMINARIES 

This section introduces the concepts that form the basis of 

the proposal of this work. It begins with a brief review of the 

important concepts of knot theory, as well as the concept of 

harmonic motion.  

 

A. Brief of Knot Theory 

Knot theory is the branch of topology that studies, among 

other things, closed trajectories in 𝑅3 . A knot ˂K˃ is an 

embedding 𝑓: 𝑆1  →  𝑅3 that has no intersections in its closed 

trajectory [12], [18]. By definition, the knots are defined in 𝑅3 

however, to analyse and perform operation on them, the knots 

are projected in 𝑅2. This projection is called knot projection 

and is represented as: 

 

 
 

Topology is a branch of math that studies the properties that 

remain invariant under smooth and continuous deformation. A 

topological invariant is defined as a quantity 𝛾  that remains 

unchanged; if here exists a homeomorphism of diffeomorphism 

that X and Y are topologically equivalent if 𝛾(𝑋) = 𝛾(𝑌) [20].   

 

Knots can be deformed smoothly through Reidemeister’s 

moves, which are shown in Fig. 1. These moves are 

isomorphism that modified the local geometry of the knot but 

remain the topology. 

 

 
 

Fig. 1  Reidemeister’s moves. 

 

Reidemeister’s moves indicate the steps to follow to know if 

two knots are equivalent but does not determine the required 

number of steps to perform it. A significance advance in this 

direction was the introduction of the knot polynomial. Two 

knots are topologically equivalent if they have the same knot 

polynomial [12], [18]. J.W. Alexander introduced the first knot 

polynomial, from here on new knot polynomials have been 

created, such as: Jone’s polynomial, Kauffman's bracket, 

HOMFLY, among others. The knot polynomial is formed from 

the information of the knot crossings [21]. In this work, we will 

use the Alexander polynomial. 

 

To calculate Alexander's polynomial [22], we start with an 

oriented diagram 𝐷 of a knot 𝐾. Let 𝑣 be the crossing points of 

the diagram: 𝑐1, 𝑐2, … , 𝑐𝑣. By Euler's theorem, the arcs of the 

diagram 𝐷 divide the plane into 𝑣 + 2 regions. Let 𝑟𝑗, 𝑟𝑘, 𝑟𝑙 y 

𝑟𝑚  be the four regions surrounding the crossing point, a 

counter clockwise turn is made, according to Fig. 2 starting 

from the dotted regions which are 𝑟𝑗 y 𝑟𝑘.  

 

 
Fig. 2 Alexander’s notation. 

 

According to the above, the following linear equation can be 

defined: 
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by taking an alternating sum of the symbols representing the 

four regions in their cyclic order and multiplying the dotted 

regions by 𝑡. 

 

By defining an equation for each crossing of the diagram, we 

obtain a system of 𝑣 equations in 𝑣 + 2 variables, which can be 

represented in a matrix 𝑣(𝑣 + 2), 𝑀, where each entry is ±𝑡, ±1 

o 0. In the matrix constructed, as described, each row of the 

matrix corresponds to cross points of the diagram and each 

column corresponds to regions. The next step in this process is 

to choose two neighbouring regions 𝑟𝑝, 𝑟𝑞 and remove them 

from their respective columns 𝑣𝑝 , 𝑣𝑞  of the matrix. 

Eliminating the columns 𝑣𝑝 , 𝑣𝑞  we obtain a square matrix 

𝑣 𝑥 𝑣, 𝑀𝑝, 𝑞. The matrix 𝑀𝑝, 𝑞 is called the Alexander matrix 

of the knot 𝐾 . Now let Δ𝑝, 𝑞(𝑡) be the determinant of this 

square matrix, which will be a polynomial in powers of 𝑡 with 

integer coefficients.  

 

Below is an example of Alexander's polynomial for knot 31 

(trefoil knot). Considering the diagram of the trefoil knot in Fig. 

3. Examining the crossing 𝑐1 we can see that the regions 𝑟3 

and 𝑟0 are dotted and that the counterclockwise cycle is 𝑟0, 𝑟3, 

𝑟4, 𝑟1. 

 

 

 
Fig. 3 Trefoil knot. 

 

 

The equation obtained for the crossing 𝑐1 is: 

 

 
 

Repeating the same process for the crossing points 𝑐2 and 𝑐3 

gives us the following equations: 

 

 
 

Now the above equations can be represented in the matrix: 

 

 
 

From the previous matrix we will eliminate two neighbouring 

regions which will be 𝑟3 and 𝑟4 which are the last two columns 

of the matrix and we will take the determinant of the matrix as 

𝑀{3,4} : 

 

 
 

Finally, we remove the factor of 𝑡 from the polynomial and 

obtain the normalized polynomial: 

 

 
 

This is the general procedure for calculating Alexander's 

polynomial, KEBAP 3D (KEBAP package, Software-

Praktikums II group and Uni Hannover) is the software used for 

the Alexander polynomial calculation. 

 

       There are several classifications of knots, one of these 

classifications is known as Lissajous knots or Fourier knots. A 

Fourier knot is a knot that is represented by a parameterized 

curve in three-dimensional space, such that the function of the 

three coordinates of the curve are each finite parameters of the 

Fourier series. Such that, the knot can be considered as the 

result of independent vibrations in each of the coordinates and 

with each of these vibrations begins a linear combination of a 

finite number of pure frequencies [18], [19]. The Fourier series 

is an expression of the form [18], [19]: 

 

 
 

where, for each term, 𝐴𝑖  𝜖 𝑅  is the amplitude, 𝐵𝑖  𝜖 𝑄  is the 

frequency, and 𝐶𝑖  𝜖  𝑅 is the phase. Assume that we are given a 

knot in the form of a parametrised curve, such that each of the 

coordinate functions is smooth 𝐶∞:  
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  Any smooth periodic function can be expressed as a Fourier 

series and can be parameterized as follows: 

 

 

 
 

Knots that can be represented in this way are known as 

Lissajous knots. The amplitude (A) is only a scaling factor, if it 

changes it does not affect the topology of the knot. It is only the 

change in phases that matters. 

 

     The knot 31  is a peculiar Lissajous knot, which is 

represented by the following system of equations [18], [19]: 

 

 
 

Fig. 4 shows the trefoil knot generated by the system of 

equations (8) 

 

 
 

Fig. 4 Lissajous presentation of the trefoil knot 

 

 

Fig. 5 shows the calculation of Alexander's polynomial of the 

knot of the Fig. 4 using the KEBAP 3D software. 

 

 

B. Vibration kinematics 

 

There are several vibratory motions, such as: harmonic 

motion, periodic motion, non-periodic motion, among others.  

In this paper, we will focus on harmonic motion. Harmonic 

motion is defined as a function of sines or cosines of the form 

[23], [24]:  

 

 
 

 
 

Fig. 5 Calculation of Alexander's polynomial of the knot of Fig. 4. 

 

where 𝐴, 𝜔, and 𝜑 are constants. The maximum displacement 

𝑥𝑚𝑎𝑥 with respect to the equilibrium position is called 

amplitude 𝐴. The argument of the cosine function, 𝜔𝑡 + 𝜑, is 

called the phase of motion and the constant 𝜑  is called the 

phase constant. This constant corresponds to the phase when 

𝑡 = 0 . The relationship between angular frequency 𝜔 , 

frequency 𝑓, and period of vibrations 𝑇 is: ω= 2𝜋𝑓 = 2𝜋/𝑇. If 

we have two or more oscillating systems with equal amplitude 

and frequency, but different phase, we can choose 𝜑 = 0 for 

one of them. In this case, we assume that the object vibrates 

harmonically in three directions, as shown in the Fig. 6 

 

 
Fig. 6 Vibrations in three directions 
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Therefore, the Fig. 6 can be represented by the following 

system of equations: 

 

 
 

 

As can be seen, the relationship between the system of 

equations (7) and (10) is obvious. 

 

 

III. RESULTS 

 

To show the proposed methodology, it is assumed that we 

have a system like the one in Fig. 6 which is represented by the 

system (7). With the following parameters, where 

(𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧) = (2,3,7)  and  (𝐶𝑥 , 𝐶𝑦, 𝐶𝑧) = (0.20,0.70,0) 

generate the knot 52, for this case, it is the nominal value of the 

system. Fig. 7 shows the knot 52, its Alexander polynomial is 

2𝑡2 − 3𝑡 + 2. 

 

 
Fig. 7 knot 52 with (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (0.20,0.70,0). 

 
 

Next, in Table I we present the results obtained by changing 

only the phases of the system (7) for certain values, which in 

this case simulate a system failure. According to the Table I, 

Fig. 8 shows the knot 01 which was generated with the phases 

(𝐶𝑥 , 𝐶𝑦, 𝐶𝑧) = (0,30,45). Fig. 9 shows the knot 31 which was 

generated with the  phases (𝐶𝑥, 𝐶𝑦 , 𝐶𝑧) = (0,0,90).  Fig.10 

shows the knot 52  which was generated with the  phases 

(𝐶𝑥 , 𝐶𝑦, 𝐶𝑧) = (0,45,90) . Finally, Fig.11 shows the knot 74 

which was generated with the phases (𝐶𝑥, 𝐶𝑦 , 𝐶𝑧) = (5,10,0). 

 

TABLE I 

RESULTS OBTAINED AT THE PHASE CHANGE OF SYSTEM (7) 

(𝐶𝑥 , 𝐶𝑦, 𝐶𝑧) Alexander polynomial 

(0,30,45) 1 (01) 

 

(0,0,90) 𝑡2 − 𝑡 + 1 (31) 

 

(0,45,90) 2𝑡2 − 3𝑡 + 2  (52) 

 

(5,10,0) 4𝑡2 − 7𝑡 + 4  (74) 

 

 

 

 
 

Fig. 8 knot 01 with (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (0,30,45). 

 
 

 
 

Fig. 9 knot 31 with (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (0,0,90). 
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Fig. 10 knot 52 with (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (0,45,90). 

 
 

 
 

Fig. 11 knot 74 with (𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = (5,10,0). 

 

 

From the results, we have different knots with respect to the 

nominal value, indicating a failure for this case study. Except 

for Fig. 10, which represents the knot 52 being the same knot 

as the nominal value. As can be seen in Fig. 10 with respect to 

Fig. 7, the knot looks somewhat similar, but rotated 180 degrees, 

so this knot could be a chiral knot (a knot that is not equivalent 

to its mirror image); so it could be a false result, since the 

Alexander polynomial cannot distinguish a knot from its mirror 

image. As one of the future works, is the use of another knot 

polynomial, which distinguishes chiral knots. 

 

 

 

 

IV. CONCLUSIONS 

 

According to the results, knot theory can identify phase 

shifts in harmonic vibrations, so it can be an additional tool to 

the existing ones for vibration fault analysis and detection. In 

the same way, the knot polynomial gives us information, from 

the topological point of view, the type of knot and the number 

of crossings that generate those vibratory patterns.  

 

As future work we intend to use sensors, such as an 

accelerometer, to acquire the vibrations of a system and really 

see how feasible the use of knot theory is; as well as what other 

methods would be used for its application. 
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