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Abstract— The increasing accessibility and affordability of 

unmanned aerial vehicles (UAVs), commonly known as drones, 

have led to the emergence of malicious users. In precaution to this 

perceived threat, various anti-UAV systems are being developed, 

including electro-optical systems utilizing cameras. It is possible 

to detect UAVs from images using various machine learning 

methods. However, the similarity between UAVs and birds poses 

a challenge, as birds can be mistakenly identified as UAVs, leading 

to false alarms in a security system. In order to avoid this problem, 

this study provided the classification of birds and unmanned 

aerial vehicles over images using deep learning methods. In this 

study, a data set consisting of 400 birds and 428 UAV images was 

used. The data were divided into 70% for training, 30% for testing 

and validation purposes. Three different deep learning models, 

based on DenseNet, VGG16, and VGG19 architectures, were 

trained using transfer learning techniques, and their 

performances were compared. Experimental results on the test 

data showed an accuracy of 94.64% with the DenseNet model, 

89.67% with the VGG16 model, and 90.67% with the VGG19 

model. 

 

Keywords— Unmanned Aerial Vehicles, DenseNet, VGG16, 
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I. INTRODUCTION 

Due to technological advancements, the usage of unmanned 

aerial vehicles (UAVs), also known as drones, has rapidly 

increased. While initially predominantly used in military 

applications, their cost reduction has led to their proliferation 

in civilian sectors as well [1, 2]. UAVs are now employed in 

various fields such as agriculture, mining, construction, natural 

disaster monitoring, meteorology, archaeology, law 

enforcement, logistics, hobbies and sports, communications, 

forensic applications, and military operations [3]. They offer 

advantages such as lightweight design, portability, low cost, 

high maneuverability, and low energy consumption. However, 

these advantages also paved the way for unmanned aerial 

vehicles to be used in malicious activities and brought some 

security problems with it. Presently, different terrorist 

organizations utilize UAVs to gather intelligence through aerial 

surveillance or transform them into weapons by attaching 

various explosive materials. This poses a significant threat to 

both states and civilian populations [4]. Anti-UAV systems 

have been developed to prevent and mitigate such harmful 

activities. These systems can generally be categorized into two 

types: prevention, neutralization systems, and detection, 

identification, tracking systems. Various technologies are 

employed for detection, identification, and tracking systems, 

including radar, radio frequency, electro-optical, infrared, 

acoustic, and multi-sensor systems. Radar systems are 

primarily designed to detect large aircraft flying at high 

altitudes. While radio frequency systems can yield successful 

results, they are ineffective against autonomous UAVs and can 

be susceptible to electromagnetic interference. Acoustic 

systems rely on detecting UAVs based on the sound generated 

by their propellers and are typically long-range. However, 

differentiating propeller noise in noisy environments can be 

challenging. Electro-optical systems aim to detect UAVs 

through image analysis. However, their effectiveness is limited 

by the restricted field of view at long ranges. However, if the 

area to be scanned is limited and in close proximity, electro-

optical systems offer a cost-effective solution to achieve 

effective results [5-7]. In the literature, various studies have 

been proposed to detect and classify UAVs using image 

analysis in order to mitigate potential threats.  

Muhammad Saqib et al. conducted a study based on 

convolutional neural networks to compare the success of 

different deep learning methods on drone detection in 2017. 

Due to the small dataset they used, they resorted to the transfer 

learning method over ImageNet. They used ZF, VGG16 and 

VGG_M_1024 architectures. They used the models they 

trained together with Faster R-CNN. They observed the best 

result in the VGG16 architecture with a mAP score of 0.66 [8-

12]. 

In 2020, Angelo Coluccia et al. conducted a study as part of 

the "Drone vs. Bird Detection Challenge," aiming to evaluate 

different deep learning-based approaches for the detection and 

discrimination of unmanned aerial vehicles (UAVs) from 
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flying birds. According to their findings, the most significant 

challenge and error in the proposed solutions occurred when 

distinguishing birds from UAVs at long distances [13]. 

Subroto Singha and Burchan Aydin conducted a study 

aiming to automatically detect drones to mitigate the potential 

dangers associated with malicious drone usage. They employed 

the YOLOv4 model [14] for drone detection. The study 

achieved a mean average precision (mAP) of 74.36%, precision 

of 0.95, recall of 0.68, and an F1-score of 0.79 [15]. 

Subroto Singha and Burchan Aydin conducted a study 

aiming to automatically detect drones to mitigate the potential 

dangers associated with malicious drone usage. They employed 

the YOLOv4 model [14] for drone detection. The study 

achieved a mean average precision (mAP) of 74.36%, precision 

of 0.95, recall of 0.68, and an F1-score of 0.79 [15]. 

In 2019, Hyun Min Oh et al. conducted a study aiming to 

classify drones and birds using machine learning methods for 

anti-drone systems. They evaluated the results using various 

convolutional neural network (CNN) architectures, including 

AlexNet [16], GoogleNet [17], Inception-v3 [18], VGG16 [10], 

ResNet-18, ResNet-50 [19], and SqueezeNet [20]. They 

achieved accuracy scores of 98.53% with AlexNet, 97.84% 

with VGG16 [10], 97.36% with ResNet18, 96.8% with 

ResNet50, 95.85% with SqueezeNet, 91.57% with GoogleNet, 

and 91.01% with Inception-v3 [21]. 

Eren Unlu et al. conducted a study aiming to autonomously 

detect drones to counter their potential malicious uses. For this 

purpose, they utilized a fixed wide-angle camera and a rotating 

tower with a narrow-angle camera. They performed drone 

detection using an approach based on the YOLOv3 [22] 

architecture, utilizing the images captured by the cameras [23]. 

In 2020, Fatemeh Mahdavi et al. collected a dataset 

consisting of a total of 712 images of birds and drones with the 

aim of drone detection. Using this dataset, they trained three 

different machine learning models: CNN (Convolutional 

Neural Network), SVM (Support Vector Machines), and KNN 

(k-Nearest Neighbors). They compared the results obtained 

from these models. According to their findings, the CNN model 

achieved an accuracy score of 93%, SVM scored 88%, and 

KNN scored 80% [24]. 

Hamid R. Alsanad et al. conducted a study to detect drones 

in order to prevent malicious drone usage. They proposed a new 

algorithm as a solution to the unreliable methods typically 

employed for drone detection, given the small size of drones. 

They improved upon YOLOv3 by creating a CNN model that 

reduced the number of parameters and decreased computational 

complexity by using Darknet53 as the starting point. The 

algorithm they developed achieved an accuracy score of 95.6% 

[25]. 

In 2020, Dinesh Kumar Behera and Arockia Bazil Raj 

conducted a study aiming to detect and classify drones using 

deep learning methods. They trained a deep learning model 

based on the YOLOv3 architecture using a dataset consisting 

of over 10,000 images of drones from various types and species. 

After training, they achieved an accuracy score of over 90% 

[26]. 

In 2022, S. Sethu Selvi et al. conducted a study to achieve 

real-time detection of drones. They used a dataset consisting of 

664 drone images and 236 bird images to train models using 

YOLOv4 and YOLOv5. They obtained an f1 score of 98% with 

YOLOv4 and 94% with YOLOv5. The YOLOv4 model 

achieved a detection speed of 54 fps on GPU and 12 fps on CPU, 

while the YOLOv5 model achieved a detection speed of 77 fps 

on GPU and 27 fps on CPU [27]. 

In 2022, Bhagyashri B. Bhagat and colleagues conducted a 

study to achieve drone detection using both moving and fixed 

cameras. They used Focus Measure Operators for feature 

extraction from the images and performed feature ranking. 

They trained a random forest classifier using a dataset 

consisting of bird and drone videos captured by both moving 

and stationary cameras. In the classification tasks performed 

with different class numbers based on whether the images 

contained drones, birds, or both, they achieved accuracy scores 

above 92% and sensitivity scores above 95% [28]. 

In 2022, Bhagyashri B. Bhagat and colleagues conducted a 

study to achieve drone detection using both moving and fixed 

cameras. They used Focus Measure Operators for feature 

extraction from the images and performed feature ranking. 

They trained a random forest classifier using a dataset 

consisting of bird and drone videos captured by both moving 

and stationary cameras. In the classification tasks performed 

with different class numbers based on whether the images 

contained drones, birds, or both, they achieved accuracy scores 

above 92% and sensitivity scores above 95% [28]. 

The problem of detecting and classifying UAVs through 

camera images in the literature remains up-to-date and studies 

in this area continue. Details about the existing studies that have 

been done before are given in Table 1. The table consists of the 

method used in the relevant studies, the score obtained, the data 

set used and the reference of the study. 

The studies conducted demonstrate that unmanned aerial 

vehicles (UAVs) can be detected through image analysis, 

leading to successful outcomes in preventing their malicious 

use. Additionally, one common challenge encountered in these 

studies is the similarity between small UAVs and birds, which 

can result in misclassifying birds as UAVs. It is seen that 

different deep learning architectures are used to overcome this 

issue by classifying bird and unmanned aerial vehicles. Some 

commonly used architectures for this purpose include 

GoogleNet, AlexNet, Inception, VGG, ResNet, SqueezeNet, 

and their different versions. 

In this study, unlike the literature studies, a DenseNet 

(Densely Connected Convolutional Networks) architecture is 

used to train a new model through transfer learning. To 

compare the model performance with other studies in the 

literature, two additional models are trained using VGG16 and 

VGG19 architectures. The trained models are used to classify 

bird and UAV images, and the results obtained from each 

model are evaluated. 

In Section 2, the collected dataset for the study and the 

trained deep learning models are described in detail. Section 3 

presents the experimental results, and Section 4 evaluates the 

obtained results. 
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TABLE 1.  SUMMARY OF UAV DETECTION & CLASSIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. MATERIALS AND METHODS 

A. Dataset 

The study utilized the "Birds vs Drone Dataset" available 

on the Kaggle platform for deep learning-based image 

classification [29]. The dataset consists of a total of 828 

images, with 400 bird images and 428 drone images. To 

ensure balanced training data, 28 drone images were 

removed during the training process. For each class, 280 out 

of 400 images were used for training, while the remaining 

120 were reserved for testing and validation. Some 

examples of bird images are shown in Figure 1.A, and 

examples of drone images are shown in Figure 1.B in the 

paper.  

 

 

Fig.1.a Sample bird images used in the dataset 

 

Fig.1.b Sample UAV images used in the Data Set 

 

 

B. Deep Learning Architectures 

1. DenseNet architecture: DenseNet Architecture: The 

DenseNet architecture was introduced by Gao Huang et 

al. and is based on convolutional neural networks [30]. 

This architecture consists of densely connected blocks, 

where the feature maps from preceding blocks are used 

as input to generate new features. This allows for more 

efficient feature extraction. Additionally, the features 

from previous blocks are concatenated and passed on to 

subsequent blocks, making the network structure 

generally deeper compared to other architectures, while 

using fewer parameters and enabling higher scores. One 

of the significant advantages of this architecture is its 

ability to alleviate the vanishing gradient problem [31]. 

Due to these advantages, in this study, a deep learning 

model was trained using the DenseNet architecture 

through transfer learning. Subsequently, model training 

was also conducted using the VGG16 and VGG19 

architectures, and the results were compared. The 

structure of the DenseNet architecture and the deep 

learning model trained using DenseNet with transfer 

learning are shown in Figure2. 

 

 

 

No Target Method Score Metric Dataset Reference 

1 Drone 

detection 

ZF 

VGG16   

VGG_M_102

4 

%61  

%66  

%60  

 

mAP 

Bird-Vs-Drone dataset 

(2727 frames) 

[11] 

2 Drone 

detection 

YOLOv4 %74,36  mAP Custom  

(479 bird and 1916 drone 

images) 

[15] 

3 Drone - Bird 

Classification 

AlexNet 

GoogleNet 

Inception-v3 

VGG16 

ResNet-18 

ResNet-50 

squeezenet 

%98,53 

%91,57 

%91,01 

%97,84   

%97,36 

%96,8 

%95.85 

 

 

 

ACC 

Custom 

(3000 birds, 1500 drone 

and 2500 background 

images) 

[21] 

4 Drone - Bird 

Classification 

CNN 

SVM 

KNN 

%93 

%88   

%80 

 

ACC 

Custom 

(total of 712 images 

consisting of drone and 

bird images.) 

[24] 

5 Drone 

detection 

YOLOv3  

(restructured) 

%95,6 ACC Custom 

(5000 drone images) 

[25] 

6 Drone 

detection 

YOLOv3 %90 + precision Custom 

(10000 drone images) 

[26] 

7 Drone 

detection and 

Drone - Bird 

Classification 

YOLOv4 

YOLOv5 

%98 

%94 

F1 score Custom 

(664 drone and 236 bird 

images) 

[27] 
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Fig. 3 VGG16 architecture and trained VGG16-based deep learning model 

Fig. 2 DenseNet architecture and trained DenseNet-based deep learning model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. VGG16 architecture: The VGG16 architecture was 

proposed by Karen Simonyan and Andrew Zisserman in 

2014. It consists of 13 convolutional layers and 3 fully 

connected layers. Maximum pooling is applied after 

consecutive convolution layers. The ReLu activation 

function replaces negative input values with 0, reducing 

the complexity of the operation. Thus, the training time 

is shortened. The main difference of VGG16 compared 

to previous architectures is the higher number of 

convolutional layers and smaller kernel size [10]. The 

structure of the VGG16 architecture and the deep 

learning model based on VGG16 trained using transfer 

learning in this study are shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. VGG19 architecture: The VGG19 architecture has a 

similar structure to VGG16. The main difference is that 

VGG19 has three additional convolutional layers. It 

consists of 16 convolutional layers and 3 fully 

connected layers. Therefore, it has a deeper structure 

than VGG16. This situation causes the training period 

to be longer than VGG16 [10]. The basic structure of the 

architecture and the VGG19-based deep learning model 

trained in this study are as shown in Figure 4. 
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Fig. 4 VGG19 architecture and trained VGG19-based deep learning model 

Fig. 5.a DenseNet training repetitions accuracy statistics 

Fig. 5.b DenseNet training repetitions loss function statistics  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Training Models with Transfer Learning Method 

 

In this study, three different models were trained using the 

dataset mentioned in Section II-A and pre-trained DenseNet, 

VGG16, and VGG19 networks through the transfer learning 

method. The model training was performed on a computer with 

a GEFORCE MX150 graphics card and 8GB RAM, using the 

GPU, for 50 epochs. Each epoch was completed in 20 steps. 

Python programming language, TensorFlow and Keras 

libraries were utilized for all processes. The images in the 

dataset were provided as input to the DenseNet, VGG16, and 

VGG19 models with a size of 224 x 224 pixels. The learning 

rate parameter was set to 10-5. Data augmentation was achieved 

during training by applying operations such as rotation, 

translation, zooming, and cropping to the data. The parameters 

used for this operation are shown in Table 2.  

 

Table 2.  Data Augmentation Parameters 

Parameter Value 

rotation_range 40 

width_shift_range 0.2 

height_shift_range 0.2 

shear_range 0.2 

zoom_range 0.2 

horizontal_flip True 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. EXPERIMENTAL RESULTS 

60 randomly selected images for each class from the images 

in the collected data set were reserved for testing. Trained 

DenseNet, VGG16 and VGG19 based deep learning models 

were tested with these images and the results were evaluated. 

Accuracy and loss metrics were used for evaluation. Model 

training was repeated 30 times to ensure the consistency of the 

results obtained. Box plots of the scores obtained in repetitions 

are shown in figure 5, figure 6 and figure 7. 

 

 

 

 



International Conference on Advanced Technologies (ICAT’23) 

  

194 

 

Fig. 6.a VGG16 training repetitions accuracy statistics 

Fig. 6.b VGG16 training repetitions loss function statistics 

Fig. 7.a VGG19 training repetitions accuracy statistics 

Fig. 8.a DenseNet training accuracy scores 

Fig. 8.b DenseNet training loss function 

Fig. 9.a VGG16 training accuracy scores 

 

 

 

  

 

 

The average scores obtained from the training repetitions for 

each model are presented in Table 3. According to the accuracy 

scores, the DenseNet model achieved the highest accuracy, 

while the VGG16 model had the lowest accuracy. When it 

comes to the loss metric, the DenseNet model again 

demonstrated the best performance. 

Table 3.  Test Metrics 

No Method ACC Loss 

1 DenseNet %94,64 %21,54 
 

2 VGG16 

 

%89,67 %24,11 

3 VGG19 
 

%90,67 %25,04 

 

The loss and accuracy scores for each epoch during the model 

training were saved as line graphs using the matplotlib library 

in Python. The saved graphs are shown as follows: Figure 8 for 

the DenseNet model, Figure 9 for the VGG16 model, and 

Figure 10 for the VGG19 model. 
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Fig. 9.b VGG16 training loss function 

Fig. 10.a VGG19 training accuracy scores 

Figure 10.b VGG19 training loss function 

 

 

 

 

 

 

 

ıv. CONCLUSION 
Unmanned aerial vehicles (UAVs), despite their easy 

accessibility and portability, also pose risks in terms of security, 

including malicious uses such as terrorism and espionage. 

Therefore, it is crucial to take precautions against UAVs in 

areas prone to security risks. Anti-UAV systems play a 

significant role in implementing such measures. These systems 

utilize different techniques based on radio frequency, acoustic, 

infrared, electro-optical, and other technologies. However, each 

of these different techniques comes with its unique challenges 

and disadvantages. In this study, a solution has been sought for 

the commonly encountered problem of "confusing birds with 

UAVs" in electro-optical-based Anti-UAV systems. To this 

end, pre-trained DenseNet, VGG16, and VGG19 networks 

were used to classify UAVs and birds based on images. To this 

end, pre-trained DenseNet, VGG16, and VGG19 networks 

were used to classify UAVs and birds based on images. Three 

different deep learning models were trained using the "Birds vs 

Drone Dataset," which consists of bird and UAV images 

available on the Kaggle platform, through transfer learning. 

Some of the data are reserved as test data. The results of 

experiments conducted on the test data using the trained deep 

learning models were compared. According to the results, the 

DenseNet model exhibited the highest accuracy, while the 

VGG16 model showed the lowest accuracy. When compared 

with CNN, SVM, and KNN models trained with a dataset 

similar in size to the one used in this study, the DenseNet 

architecture demonstrated higher accuracy. While 

outperforming models such as GoogleNet and Inception-V3 

trained with a large amount of data, it lagged behind AlexNet, 

ResNet18, ResNet50, and VGG16 models. The trained 

DenseNet model in this study performed better than the VGG16 

model but fell short compared to the VGG16 model trained 

with a large dataset. This indicates that the size of the training 

dataset can affect model performance. This study demonstrated 

successful results using the DenseNet architecture, which has 

not been previously attempted in previous studies on 

classifying birds and UAVs. In future work, the trained 

classification models can be integrated into a real-time 

operating system to produce solutions compatible with real-

world conditions. Additionally, the network structures can be 

optimized to be lightweight and perform well in limited-

resource environments such as embedded systems. Before 

conducting model training, identifying regions of interest 

(ROIs) in the UAV and bird images in the dataset can enhance 

the scores of classification models. 
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