
Proceedings Paper DOI: 10.58190/icat.2023.23

PROCEEDINGS OF

INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES

https://proceedings.icatsconf.org/

11th International Conference on Advanced Technologies (ICAT'23), Istanbul-Turkiye, August 17-19, 2023.

95

Development of Resolver Circuit with Long Short

Term Memory and Reinforcement Learning

Algorithms
Yusuf ÇAĞLAYAN1

1ASELSAN A.S. Ankara, Turkey

ycaglayan@aselsan.com.tr

Abstract— In our age, the usage areas of artificial intelligence have

increased considerably. These areas were particularly concerned

with the correct predictability of future data using available data.

It has become necessary to work on various machine learning

algorithms to be used in the calculations of the resolver circuit,

which is a feedback element used for tracking the position and

position information of the electric motor unit used in various

vehicles. The use of machine learning algorithms in the design and

implementation of the resolver circuit, which is one of the most

important elements of electric motor designs, will shed light on

future studies. In this study, it is focused on the use of machine

learning algorithms in the calculation of the resolver circuit,

position and position information and the performance

differences between each other. In this study, LSTM (Long Short

Term Memory) and Reinforcement Learning (RL) algorithms

were compared. While comparing these algorithms, the types of

LSTM and RL algorithms were also studied and compared. As a

result of the results obtained, it was aimed that the motor designs

would be less costly, and the results obtained in terms of more

reliable motor position and position information to be used were

promising. In addition, with this study, a basis was created for

working on machine learning algorithms in the calculation of

different parameters. With this study, a great way has been

achieved in integrating algorithms used in electric vehicles, which

are quite obsolete today, into AI-based algorithms.

Keywords— Resolver Circuit, Long-Short-Term Memory (LSTM)

Networks, Reinforcement Learning Algorithms

I. INTRODUCTION

This article presents a research on combining solver circuits

with long-short-term memory (LSTM) and reinforcement

learning algorithms. Resolver circuits are one of the important

components used to determine the angular position of a rotating

shaft. Long short-term memory (LSTM), on the other hand, is

a type of neural network designed for sequential data, while

reinforcement learning is a machine learning approach that

allows an agent to learn the environment through rewards and

punishments from its environment. This article examines how

LSTM and reinforcement learning algorithms can be integrated

to improve the performance of solver circuits and how this

combined method can achieve better results. The development

of solver circuits plays an important role in many fields such as

automation, robotics and industrial applications. Therefore, the

findings of the article can make valuable contributions to the

relevant industries and academia.

 This research demonstrates the potential of solver circuits to

harness the power of artificial intelligence and machine

learning techniques without being limited to traditional

methods. The results of the article can inspire researchers,

engineers and those interested in this field and pave the way for

new discoveries.

It is hoped that the methods presented in the article will be

effective in improving the performance of solver circuits. The

results are successful, there may be wider use of such

techniques in industrial applications and other related fields.

The organizational structure of the remainder of this article

is as follows. In the following section we conclude the

summary of the relevant studies, our approach and working in

Chapter 3, the comparison of results industrially and the

demonstration results are in Chapter 4, and finally the article in

Chapter 5.

II. RELATED WORK

Short-term memory is one of the mechanisms of iterative

neural networks, which is one of the deep learning algorithms.

Typically, this algorithm validates datasets and snapshot data.

The LSTM algorithm has been used in various fields as an

advantage of the memory and data analysis engine. The LSTM

algorithm ensures that all possible negative scenarios can be

predicted and precautions can be taken against this. For

example, the LSTM algorithm is used to predict sewer

overflows in problem areas [1] of municipalities. In addition,

the LSTM algorithm is used to protect automatic systems from

external interference, which are necessary for electrical

networks [2]. With all these results, the LSTM algorithm is

used to estimate wind energy production [3], estimate solar

energy production [4], estimate traffic and estimate the

trajectory of medical services [5] [6], answer rating [7]. Given

https://doi.org/10.58190/icat.2023.23
https://proceedings.icatsconf.org/

International Conference on Advanced Technologies (ICAT’23)

96

the good results in other areas, we hope that using the LSTM

algorithm to generate test cases is an effective strategy.

Machine learning can be used to detect and prevent software

vulnerabilities and even create negative test cases. To this end,

a number of studies are being carried out. For example, deep

learning algorithms are used to detect and prevent [8] software

security vulnerabilities.

Nuclear reactors are quite serious constructions. For these

structures, all safety measures must be taken. At this stage,

possible failure scenarios are very important. Possible accident

scenarios created using deep learning methods can be generated

automatically [9].

III. METHODOLOGY

Recursive Neural Network (RNN), Long Short-Term

Memory (LSTM) and Reinforcement Learning Algorithm are

important constructs in deep learning. While RNN handles

sequential data processing and time dependency, LSTM has the

ability to learn long-term dependencies effectively. The

reinforcement learning algorithm aims to learn the best actions

by interacting with the environment. It should be considered

that these three main players together contribute to the effective

performance of deep learning in various fields.

A. Recursive Neural Networks (RNN)

Recursive Neural Networks (RNN) is a deep learning model

that can recognize time or sequential connections between input

and output. These connections are very important for cases

where the data is in a sequential structure. For example, cases

where each word is related to the previous word in texts and the

outputs change depending on the input order, such as language

translation, show the power of RNN. RNN has a cyclical nature,

meaning they feed their output back to them via loop so they

can remember previous states. However, RNNs have

difficulties in learning long- term dependencies effectively. An

issue called gradient loss occurs when gradient values are too

small or too large during backpropagation and can negatively

impact their ability to handle long-term dependencies.

B. Long Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a deep learning model

developed in response to the learning difficulties of long-

term dependencies of RNNs. LSTM is particularly effective for

handling texts, time series, and other data series with long-term

dependencies. LSTM cells are equipped with special structures

that can remember previous states more effectively. LSTM

consists of four main components called forget, input, output

and memory gate. These structures regulate the storage,

updating and use of the information inside the cell as output.

By reducing gradient loss, they make long-term addictions

more learnable. Therefore, in the field of natural language

processing such as language translation, language modeling

and language analysis, and in time series estimation, LSTM

can achieve more effective results than RNNs. However, due to

their more complex structure, they may require more

computational power and the training process may take longer

because they contain more parameters. Also, the risk of over-

learning may increase due to the model complexity of LSTM.

C. Reinforcement Learning Algorithm

Reinforcement learning is a learning approach in which an

agent tries to learn best actions through their experiences by

interacting with their environment. One of the most known

algorithms in this field is Q-learning. Reinforcement learning

can achieve successful results in complex and uncertain

environments. It can be used especially in application areas

such as gaming, robotics, finance and traffic management. The

basic structures of the algorithm are state-space, action- space,

reward function and policy function. The state-space is the set

of states that describe the agent’s environment; action-space is

the set of actions that the agent can perform. The reward

function provides the mechanism by which the agent is

rewarded for successful actions and punished for unsuccessful

actions. The policy function is the mechanism by which the

agent chooses what action to take in a given situation. The

advantages of the reinforcement learning algorithm include the

ability to quickly adapt to environmental conditions and

optimize certain tasks. The algorithm can collect data on its

own to solve certain tasks and learn from its experience the

actions that will best perform these tasks. However, it can be

difficult to design a reward function for a reinforcement

learning algorithm, and incorrect rewards can adversely affect

the performance of the algorithm. The training process can take

a long time and require high computational power. Also, the

agent’s learning through experience can sometimes be long and

complex due to the uncertainty of the environment.

IV. INDUSTRIAL CASE STUDY

Electric motors are critical components widely used in many

industrial applications and vehicle systems. Accurate and

precise operation of these motors is critical to performance and

efficiency. Resolver circuits are used to precisely detect and

control the angle of rotation in electric motors. Traditional

resolver circuits have limitations in handling long-term

dependencies and complex environmental conditions in certain

situations. Therefore, taking a more advanced and adaptive

approach is an important step towards improving the

performance of electric motors and making them run more

reliably.

Long Short-Term Memory (LSTM) is a powerful artificial

neural network model that offers superior ability in processing

sequential data and recalling previous states. The use of LSTM

in the development of resolver circuits provides the opportunity

to learn longer-term dependencies more effectively. This

allows for more precise and stable monitoring of the angle of

rotation of the engine under complex operating conditions. The

LSTM-based resolver circuit can adapt faster to the fast

changing workloads and external factors of the motor, thus

increasing the efficiency and response time of the motor.

The reinforcement learning algorithm can be used to provide

adaptive control in the resolver circuit. The algorithm can

generate optimal control strategies based on the real-time

operating conditions of the engine. This allows the engine to

International Conference on Advanced Technologies (ICAT’23)

97

react quickly to unpredictable environmental changes and

optimize its performance. At the same time, reinforcement

learning can also reduce energy consumption by learning the

correct and optimized operating conditions to increase the

energy efficiency of the motor. In this way, the resolver circuit

developed with LSTM and reinforcement learning algorithm

has the potential to increase the efficiency of electric motors

and offer a more adaptive control mechanism.

A. Experimental Setup

This study was conducted using LENOVO 20YTS0GS00

computer with 11th Gen Intel(R) Core(TM) i7-11850H @

2.50GHz 2.50 GHz operating system. While using the

programs, Tensorflow and stable-baselines3 libraries were used.

In this project, all existing angle values from 0 to 360 degrees

will be used to calculate the sine and cosine values for the input

values. And when testing, these fixed values will be taken as a

basis.

B. Application Management

The development phase was primarily tested with the LSTM

algorithm. the code first generated sine and cosine values for

angles between 0 and 360 degrees using NumPy. Then, the

input data (angles) and target data (sine and cosine values) were

prepared to train the LSTM model. Normalized to scale the

input data from 0 to 1. Then, their data was split into training

and test sets.

Next, we create an LSTM model using TensorFlow’s Keras

API. The model consists of a 64-unit LSTM layer and a 2-

output Dense layer to estimate the sine and cosine values. The

mean square error (MSE) was used as the loss function and the

Adam optimizer for training. The model is then trained on the

training data and evaluated on the test data. Finally, the trained

LSTM model is used to estimate the sine and cosine values for

a new angle (in this case, 45 degrees) and print the predicted

results.

A summary of the LSTM model used is shown in Table II.

TABLE I

THE CALCULATED MATHEMATICAL VALUE OF THE SINE AND COSINE

VALUES AT THE SELECTED ANGLE DEGREE (45 DEGREES)

sin(45) 0.85090352453

cos(45) 0.52532198881

TABLE II

SUMMARY OF THE USED FIRST LSTM MODEL

Model: sequential

Layer (type) Output Shape Param #

lstm 63 (LSTM) (None, 64) 16896

dense 54 (Dense) (None, 2) 130

Total params: 17,026

Trainable params: 17,026

Non-trainable params: 0

Predicted Sine: 0.6343855857849121

Predicted Cosine: 0.68389892578125

When the values in Table 1 and the values estimated by the

LSTM algorithm for the sine and cosine values in Table 2 are

compared, the need for further development of the LSTM

model has emerged. If this development is gathered under 10

headings,

1) Increasing Model Complexity: Consider increasing

the number of LSTM units or adding more LSTM layers to the

model. A more complex model may have a higher capacity to

catch complex patterns in the data, potentially leading to better

predictions and less loss.

2) Adjusting the Learning Rate: Experiment with

different learning rates for the optimizer. Too high a learning

rate may cause the model to exceed the optimal solution, while

too low a learning rate may result in slow convergence.

Finding an appropriate learning rate can significantly affect the

training performance of the model.

3) Batch Size: Try different batch sizes during training.

Larger batch sizes can help achieve stable updates of model

weights, potentially resulting in faster convergence and lower

loss. However, very large heap sizes may require more memory

during training.

4) Array Length: Set the string length used for training.

In current code, each angle is treated as a separate array with

array length 1. You can experiment with longer sequences to

provide more context to the LSTM and potentially improve

predictions.

5) Editing Techniques: Apply regularization techniques

such as L1 or L2 editing to the LSTM layer or Dense layer.

Regularization can prevent overfitting and improve the

generalization performance of the model.

6) Using a Different Activation Function: Try using

different activation functions for the LSTM layer, such as

hyperbolic tangent (tanh) or sigmoid. Different activation

functions can affect the model’s ability to learn patterns in the

data and contribute to loss reduction.

7) Data Augmentation: If you have a limited amount of

data, consider applying data augmentation techniques to create

additional training examples. For example, you can add random

noise to the angle data to create variations and increase the

variety of training samples.

8) Gradient Clipping: Apply gradient clipping to limit

the size of gradients while training. This can help prevent

bursting gradients, especially in deep LSTM networks.

9) Hyperparameter Tuning: Experiment with different

hyperparameter values such as group size, number of periods,

and LSTM layer units. A systematic hyperparameter search can

help find the optimal configuration to reduce loss.

10) Stop Early: Practice stopping early during exercise.

Monitor the loss on the validation set and stop training when

the loss starts to increase or reaches a plateau. This can prevent

overfitting and help maintain the best model.

The new LSTM model can be changed as follows:

• To increase the number of LSTM units to 128.

• To increase the batch size to 32.

• To set the sequence length to 5.

• To add L2 regularization to the LSTM layer with a

regularization strength of 0.01.

• To shuffle the training data before each epoch to

introduce data augmentation.

International Conference on Advanced Technologies (ICAT’23)

98

• To add gradient clipping to the optimizer with a clip

value of 1.0.

• To use the ’tanh’ activation function for the LSTM

layer.

• To set the learning rate of the optimizer to 0.001.

• to implement early stopping with a patience of 10

epochs.

• To use the Adam optimizer with the default learning

rate.

TABLE III

SUMMARY OF THE USED SECOND LSTM MODEL

Model: sequential

Layer (type) Output Shape Param #

lstm 13 (LSTM) (None, 128) 66560

dense 11 (Dense) (None, 2) 258

Total params: 66,818

Trainable params: 66,818

Non-trainable params: 0

Predicted Sine: 0.8304228782653809

Predicted Cosine: 0.52862938165664673

The new LSTM model formed when 10 solutions are applied

to the 1st LSTM model is shown in Table 3. When the sine and

cosine values in Table 3 and Table 1 are examined, it is seen

that the new implementations have reduced the loss value and

are close to the real value.

Now, if a model is to be built with Reinforcement Learning

Algorithm, the feature of the model is as follows:

The code defines a special environment

called ”SineCosineEnv” to simulate the predicted sine and

cosine values for certain angles. It uses a 64 element LSTM

model and a dense layer to predict values. The reinforcement

learning algorithm used is Deep Q-Networks (DQN) by Stable-

Baselines3. The DQN agent is trained for 100,000 time steps

using ”MlpPolicy” with MLP architecture. The agent takes the

current normalized angle as input and learns to estimate the

corresponding sine and cosine values in an effort to minimize

the standard error between the predictions and the actual values.

Enhanced learning features:

• Environment: A special environment presents the

problem of estimating the sine and cosine values for angles.

• DQN: The Deep Q-Network algorithm is used to train

an agent to make optimal predictions based on actions (angles)

and rewards (prediction accuracy).

• Principle: “MlpPolicy” is chosen, which uses a multi-

layer perceptron (MLP) architecture to select actions in discrete

areas.

• Discovery: DQN uses epsilon-greedy discovery where

an agent looks for a certain probability (epsilon) and otherwise

uses its current knowledge.

• Target Network: DQN uses a target network to

stabilize learning, using separate networks for action selection

and value estimation.

Thus, the code trains the DQN agent to evaluate sine and

cosine values using an LSTM model in the user environment.

The trial and error tool learn to make accurate predictions for

different angles and combines reinforcement learning methods

such as DQN algorithm, experience repetition, and target

networks to provide effective learning.

TABLE IV

SUMMARY OF THE USED FIRST REINFORCEMENT LEARNING ALGORITHM

Model: sequential

Layer (type) Output Shape Param #

lstm(LSTM) (None, 64) 18896

dense(Dense) (None, 1) 65

Total params: 16,961

Trainable params: 16,961

Non-trainable params: 0

Predicted Sine: 0.016603474277024376

Predicted Cosine: 0.9998621528200435

Comparing the results obtained in Table 1 with Table 4, the

estimated values were far from the true values. For this, various

solution methods should be tried and a result closer to the real

results should be obtained. To further improve these results, the

following methods can be tried:

• Normalizing Target Values: Normalizing target sine

and cosine values to the range [0, 1] to match the output of the

model.

• Normalizing Observations: Shrinking the

observations (input data) to a smaller range to improve

convergence and stability during training.

• Increasing Training Time Steps: Increasing the

number of training timesteps to enable the agent to learn better

impressions and approach a more appropriate policy

• Adjusting the Learning Rate: Experiment with

different learning rates should be done for the optimizer.

• Exploring Different Architectures: Try different

LSTM model architectures, such as increasing the number of

LSTM units, adding more layers, or using different enable

functions, to see if the model can capture more complex

patterns.

In the next step, a new solution was applied as follows and

the results are shown in Table 5.

• Target sine and cosine values were normalized to the

range [0, 1] by adding 1 and dividing by 2,

• Observations (input data) were normalized to the

interval [0, 1] by dividing by ,360.0,

• The training time steps are increased to 5000 to allow

the agent to learn better representations and approach a more

appropriate policy.

• The learning rate was set to 0.001 to prevent overshoot

and improve convergence.

The results obtained with the changes made are shown in

Table 5. When the values in Table 5 and Table 1 are compared,

the implementations are quite close to the real value.

C. Results and Discussion

When all the results are examined, it has been determined

that deep learning and machine learning algorithms are very

advantageous in the predictive development of the sine and

cosine values used in the calculations of the resolver circuit.

International Conference on Advanced Technologies (ICAT’23)

99

TABLE V

SUMMARY OF THE USED SECOND REINFORCEMENT LEARNING ALGORITHM

Model: sequential

Layer (type) Output Shape Param #

lstm(LSTM) (None, 64) 18896

dense(Dense) (None, 1) 65

Total params: 16,961

Trainable params: 16,961

Non-trainable params: 0

Predicted Sine: 0.8367458

Predicted Cosine: 0.519999

These determinations have emerged by developing LSTM

and Reinforcement algorithms. These algorithms can be further

developed according to the related problem and the inputs used,

and their architecture can become a very different role. The

important point here is the nature and number of the problem

and the data used. In the studies, a system specific to our

problem and specific to the data type we use has been

developed and development processes have been carried out

with LSTM and Reinforcement learning algorithm

architectures. When all the results are examined, the absolute

result is that the algorithm can be improved.

V. CONCLUSIONS

In conclusion, the application of LSTM and Reinforcement

Learning algorithms to the resolver circuit used in electric

motors has shown promising results in accurately predicting

sine and cosine values. By optimizing the LSTM model with

more units (128), larger batch sizes (32), and longer sequence

length (5), we were able to improve model accuracy and

convergence. The addition of L2 regularization (0.01) and

gradient clipping (1.0) further stabilized the learning process,

preventing overfitting and improving generalization.

Additionally, using the ”tanh” trigger function and using an

early shutdown with a 10-epoch delay improved the model’s

performance.

For the reinforcement learning algorithm, normalizing the

target sine and cosine values along with the input data allowed

the agent to make more accurate predictions. With an increase

in the number of learning time steps (5000) and a learning rate

of 0.001, the agent learned to better represent the environment

and moved closer to a more appropriate policy. Taken together,

these results demonstrate the effectiveness of LSTM and

reinforcement learning approaches to accurately predict motor

parameters. As for future research, researchers could explore

the integration of more complex architectures and advanced

optimization techniques to further enhance the predictive

capabilities of these algorithms. Furthermore, the inclusion of

real engine data and the study of various reward functions can

provide valuable insights into optimizing engine performance

in practical applications. The combination of these approaches

promises to improve motor control and efficiency in a variety

of industrial and automotive applications.

ACKNOWLEDGMENT

We would like to thank the Aselsan A.S. test groups and

anonymous comments for supporting our study. I am also

grateful to Cem Çiğdemoğlu and Mehmet Kubilay.

REFERENCES

[1] Gudaparthi, H., Johnson, R., Challa, H., and Niu, N., “Deep learning for

smart sewer systems: Assessing nonfunctional requirements,” in

Proceedings of the ACM/IEEE 42nd International Conference on

Software Engineering: Software Engineering in Society, Jun, 2020,

paper, p. 35-38.

[2] Musleh, A. S., Chen, G., Dong, Z. Y., Wang, C., and Chen, S. “Attack

Detection in Automatic Generation Control Systems using LSTM-based

Stacked Autoencoders,” IEEE Transactions on Industrial Informatics.,

2022.

[3] Tao, Y., Chen, H., and Qiu, C., “Wind power prediction and pattern

feature based on deep learning method,” in 2014 IEEE PES Asia- Pacific

Power and Energy Engineering Conference (APPEEC), 2014, paper, p.

1-4.

[4] Gensler, A., Henze, J., Sick, B., and Raabe, N., “Deep Learning for solar

power forecasting—An approach using AutoEncoder and LSTM Neural

Networks,” in 2016 IEEE international conference on systems, man, and

cybernetics (SMC), 2016, paper, p. 002858-002865.

[5] Zhang, W., Yu, Y., Qi, Y., Shu, F., and Wang, Y., “Short-term traffic flow

prediction based on spatio-temporal analysis and CNN deep learning,”

Transportmetrica A: Transport Science, vol. 15(2), pp. 1688- 1711 , 2019.

[6] Pham, T., Tran, T., Phung, D., and Venkatesh, S., “Predicting health-

care trajectories from medical records: A deep learning approach,”

Journal of biomedical informatics, vol. 69, pp. 218-229, 2017.

[7] Li, Z., Huang, J., Zhou, Z., Zhang, H., Chang, S., and Huang, Z.,

“LSTM-based deep learning models for answer ranking,” in 2016 IEEE

First International Conference on Data Science in Cyberspace (DSC),

2016, paper, p. 90-97.

[8] Singh, S. K., and Chaturvedi, A., “Applying deep learning for dis-

covery and analysis of software vulnerabilities: A brief survey,” Soft

Computing: Theories and Applications, pp. 649-658, 2020.

[9] Kim, H., Cho, J., and Park, J., “Application of a deep learning technique

to the development of a fast accident scenario identifier,” IEEE Access,

vol. 8, pp. 177363-177373, 2020.

