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Abstract— In our age, the usage areas of artificial intelligence have 

increased considerably. These areas were particularly concerned 

with the correct predictability of future data using available data. 

It has become necessary to work on various machine learning 

algorithms to  be  used  in  the  calculations  of the resolver circuit, 

which is a feedback element used for tracking the position and 

position information of the electric motor unit used in various 

vehicles. The use of machine learning algorithms in the design and 

implementation of the resolver circuit, which is one of the most 

important elements   of electric motor designs, will shed light  on  

future  studies.  In this study, it is focused on the use of machine 

learning algorithms in the calculation of the resolver circuit, 

position and position information and the performance 

differences between each other. In this study, LSTM (Long Short 

Term Memory) and Reinforcement Learning (RL) algorithms 

were compared. While comparing these algorithms, the types of 

LSTM and RL algorithms were also studied and compared.   As a 

result of the results obtained, it was aimed that the motor designs 

would be less costly, and the results obtained in terms of more 

reliable motor position and position information to be used were 

promising. In addition, with this study, a basis was created for 

working on machine learning algorithms in the calculation of 

different parameters. With this study, a great way has been 

achieved in integrating algorithms used in electric vehicles, which 

are quite obsolete today, into AI-based algorithms. 
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I. INTRODUCTION 

This article presents a research on combining solver circuits 

with long-short-term memory (LSTM) and reinforcement 

learning algorithms. Resolver circuits are one of the important 

components used to determine the angular position of a rotating 

shaft. Long short-term  memory (LSTM), on the other hand, is 

a type of neural network designed for sequential data, while 

reinforcement learning is a machine learning approach that 

allows an agent to learn the environment through rewards and 

punishments from its environment. This article examines how 

LSTM and reinforcement learning algorithms can be integrated 

to improve the performance of solver circuits and how this 

combined method can achieve better results. The development 

of solver circuits plays an important role in many fields such as 

automation, robotics and industrial applications. Therefore, the 

findings of the article can make valuable contributions to the 

relevant industries and academia. 

 This research demonstrates the potential of solver circuits to 

harness the power of artificial intelligence and machine 

learning techniques without being limited to traditional 

methods. The results of the article can inspire researchers, 

engineers and those interested in this field and pave the way for 

new discoveries. 

It is hoped that the methods presented in the article will be 

effective in improving the performance of solver circuits. The 

results are successful, there may be wider use of such 

techniques in industrial applications and other related fields. 

The organizational structure of the remainder of this article 

is as follows. In the following section we conclude the 

summary of the relevant studies, our approach and working in 

Chapter 3, the comparison of results industrially and the 

demonstration results are in Chapter 4, and finally the article in 

Chapter 5. 

II. RELATED WORK 

Short-term memory is one of the mechanisms of iterative 

neural networks, which is one of the deep learning algorithms. 

Typically, this algorithm validates datasets and snapshot data. 

The LSTM algorithm has been used in various fields as an 

advantage of the memory and data analysis engine. The LSTM 

algorithm ensures that all possible negative scenarios can be 

predicted and precautions can be taken against this. For 

example, the LSTM algorithm is used to predict sewer 

overflows in problem areas [1] of municipalities. In addition, 

the LSTM algorithm is used to protect automatic systems from 

external interference, which are necessary for electrical 

networks [2]. With all these results, the LSTM algorithm is 

used to estimate wind energy production [3], estimate solar 

energy production [4], estimate traffic and estimate the 

trajectory of medical services [5] [6], answer rating [7]. Given 
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the good results in other areas, we hope that using the LSTM 

algorithm to generate test cases is an effective strategy. 

Machine learning can be used to detect and prevent software 

vulnerabilities and even create negative test cases. To this end, 

a number of studies are being carried out. For example, deep 

learning algorithms are used to detect and prevent [8] software 

security vulnerabilities. 

Nuclear reactors are quite serious constructions. For these 

structures, all safety measures must be taken. At this stage, 

possible failure scenarios are very important. Possible accident 

scenarios created using deep learning methods can be generated 

automatically [9]. 

III. METHODOLOGY 

Recursive Neural Network (RNN), Long Short-Term 

Memory (LSTM) and Reinforcement Learning Algorithm are 

important constructs in deep learning. While RNN handles 

sequential data processing and time dependency, LSTM has the 

ability to learn long-term dependencies effectively. The 

reinforcement learning algorithm aims to learn the best actions 

by interacting with the environment. It should be considered 

that these three main players together contribute to the effective 

performance of deep learning in various fields. 

A. Recursive Neural Networks (RNN) 

Recursive Neural Networks (RNN) is a deep learning model 

that can recognize time or sequential connections between input 

and output. These connections are very important for cases 

where the data is in a sequential structure. For example, cases 

where each word is related to the previous word in texts and the 

outputs change depending  on  the  input order, such as language 

translation, show the power  of RNN. RNN has a cyclical nature, 

meaning they feed their output back to them via loop so they 

can remember previous states. However, RNNs have 

difficulties in learning long- term dependencies effectively. An 

issue called gradient loss occurs when gradient values are too 

small or too large during backpropagation and can negatively 

impact their ability to handle long-term dependencies. 

B. Long Short Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a deep learning model 

developed in  response  to  the  learning  difficulties  of long-

term dependencies of RNNs. LSTM is particularly effective for 

handling texts, time series, and other data series with long-term 

dependencies. LSTM cells are equipped with special structures 

that can remember previous states more effectively. LSTM 

consists of four main components called forget, input, output 

and memory gate. These structures regulate the storage, 

updating and use of the information inside the cell as output. 

By reducing gradient loss, they make long-term addictions 

more learnable.  Therefore, in  the field of natural language 

processing such as language translation, language modeling 

and language analysis, and   in time series estimation, LSTM 

can achieve more effective results than RNNs. However, due to 

their more complex structure, they may require more 

computational power and the training process may take longer 

because they contain more parameters. Also, the risk of over-

learning may increase due to the model complexity of LSTM. 

C. Reinforcement Learning Algorithm 

Reinforcement learning is a learning approach in which an 

agent tries to learn best actions through their experiences by 

interacting with their environment. One of the most known 

algorithms in this field is Q-learning. Reinforcement learning 

can achieve successful results in complex and uncertain 

environments. It can be used especially in application areas 

such as gaming, robotics, finance and traffic management. The 

basic structures of the algorithm are state-space, action- space, 

reward function and policy function. The state-space is the set 

of states that describe the agent’s environment; action-space is 

the set of actions that the agent can perform. The reward 

function provides the mechanism by which the agent is 

rewarded for successful actions and punished for unsuccessful 

actions. The policy function is the mechanism by which the 

agent chooses what action to take in a given situation. The 

advantages of the reinforcement learning algorithm include the 

ability to quickly adapt to environmental conditions and 

optimize certain tasks. The algorithm can collect data on its 

own to solve certain tasks and learn from its experience the 

actions that will best perform these tasks. However,  it can be 

difficult to design a reward function for  a reinforcement 

learning algorithm, and incorrect rewards can adversely affect 

the performance of the algorithm. The training process can take 

a long time and require high computational power. Also, the 

agent’s learning through experience can sometimes be long and 

complex due to the uncertainty of the environment. 

IV. INDUSTRIAL CASE STUDY 

Electric motors are critical components widely used in many 

industrial applications and vehicle systems.  Accurate and 

precise operation of these motors is critical to performance and 

efficiency. Resolver circuits are used to precisely detect and 

control the angle of rotation in electric motors. Traditional 

resolver circuits have limitations in handling long-term 

dependencies and complex environmental conditions in certain 

situations. Therefore, taking a more advanced and adaptive 

approach is an important step towards improving the 

performance of electric motors and making them run more 

reliably. 

Long Short-Term Memory (LSTM) is a powerful artificial 

neural network model that offers superior ability in processing 

sequential data and recalling previous states. The use of LSTM 

in the development of resolver circuits provides the opportunity 

to learn longer-term dependencies more effectively. This 

allows for more precise and stable monitoring of the angle of 

rotation of the engine under complex operating conditions. The 

LSTM-based resolver circuit can adapt faster to the fast 

changing workloads and external factors of the motor, thus 

increasing the efficiency and response time of the motor. 

The reinforcement learning algorithm can be used to provide 

adaptive control in the resolver circuit. The algorithm can 

generate optimal control strategies based on the real-time 

operating conditions of the engine. This allows the engine to 
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react quickly to unpredictable environmental changes and 

optimize its performance. At the same time, reinforcement 

learning can also reduce energy consumption by learning the 

correct and optimized operating conditions to increase the 

energy efficiency of the motor. In this way, the resolver circuit 

developed with LSTM and reinforcement learning algorithm 

has the potential to increase the efficiency of electric motors 

and offer a more adaptive control mechanism. 

A. Experimental Setup 

This study was conducted using LENOVO 20YTS0GS00 

computer with 11th Gen Intel(R) Core(TM) i7-11850H @ 

2.50GHz 2.50 GHz operating system. While using the 

programs, Tensorflow and stable-baselines3 libraries were used. 

In this project, all existing angle values from 0 to 360 degrees 

will be used to calculate the sine and cosine values for the input 

values. And when testing, these fixed values will be taken as a 

basis. 

B. Application Management 

The development phase was primarily tested with the LSTM 

algorithm. the code first generated sine and cosine  values for 

angles between 0 and 360 degrees using NumPy. Then, the 

input data (angles) and target data (sine and cosine values) were 

prepared to train the LSTM model. Normalized to scale the 

input data from 0 to 1. Then, their data was split into training 

and test sets. 

Next, we create an LSTM model using TensorFlow’s Keras 

API. The model consists of a 64-unit LSTM layer and a 2- 

output Dense layer to estimate the sine and cosine values. The 

mean square error (MSE) was used as the loss function and the 

Adam optimizer for training. The model is then trained on the 

training data and evaluated on the test data. Finally, the trained 

LSTM model is used to estimate the sine and cosine values for 

a new angle (in this case, 45 degrees) and print the predicted 

results. 

A summary of the LSTM model used is shown in Table II. 

TABLE I 

THE CALCULATED MATHEMATICAL VALUE OF THE SINE AND COSINE 

VALUES AT THE SELECTED ANGLE DEGREE (45 DEGREES) 

sin(45) 0.85090352453 

cos(45) 0.52532198881 

 

TABLE II 

SUMMARY OF THE USED FIRST LSTM MODEL  

Model: sequential 

Layer (type) Output Shape Param # 

lstm 63 (LSTM) (None, 64) 16896 

dense 54 (Dense) (None, 2) 130 

Total params: 17,026 

Trainable params: 17,026 

Non-trainable params: 0 

Predicted Sine: 0.6343855857849121 

Predicted Cosine: 0.68389892578125 

 

When the values in Table 1 and the values estimated by  the 

LSTM algorithm for the sine and cosine values in Table 2 are 

compared, the need for further development of the LSTM 

model has emerged. If this development is gathered under 10 

headings, 

1) Increasing Model Complexity: Consider increasing 

the number of LSTM units or adding more LSTM layers to the 

model. A more complex model may have a higher capacity to 

catch complex patterns in the data, potentially leading to better 

predictions and less loss. 

2) Adjusting the Learning Rate: Experiment with 

different learning rates for the optimizer. Too high a learning 

rate may cause the model to exceed the optimal solution, while 

too low a learning rate may  result  in slow convergence. 

Finding an appropriate learning rate can significantly affect the 

training performance of the model. 

3) Batch Size: Try different batch sizes during training. 

Larger batch sizes can help achieve stable updates of model 

weights, potentially resulting in faster convergence and lower 

loss. However, very large heap sizes may require more memory 

during training. 

4) Array Length: Set the string length used for training. 

In current code, each angle is treated as a separate array with 

array length 1. You can experiment with longer sequences to 

provide more context to the LSTM and potentially improve 

predictions. 

5) Editing Techniques: Apply regularization techniques 

such as L1 or L2 editing to the  LSTM  layer  or Dense layer. 

Regularization can prevent overfitting and improve the 

generalization performance of the model. 

6) Using a Different Activation Function: Try using 

different activation functions for the LSTM layer, such as 

hyperbolic tangent (tanh) or sigmoid. Different activation 

functions can affect the model’s ability to learn patterns in the 

data and contribute to loss reduction. 

7) Data Augmentation: If you have a limited amount of 

data, consider applying data augmentation techniques to create 

additional training examples. For example, you can add random 

noise to the angle data to create variations and increase the 

variety of training samples. 

8) Gradient Clipping: Apply gradient clipping to limit 

the size of gradients while training. This can help prevent 

bursting gradients, especially in deep LSTM networks. 

9) Hyperparameter Tuning: Experiment with different 

hyperparameter values such as group size, number of periods, 

and LSTM layer units. A systematic hyperparameter search can 

help find the optimal configuration to reduce loss. 

10) Stop Early: Practice stopping early during exercise. 

Monitor the loss on the validation set and stop training when 

the loss starts to increase or reaches a plateau. This can prevent 

overfitting and help maintain the best model. 

The new LSTM model can be changed as follows: 

• To increase the number of LSTM units to 128. 

• To increase the batch size to 32. 

• To set the sequence length to 5. 

• To add L2 regularization to the LSTM layer with a 

regularization strength of 0.01. 

• To shuffle the training data before each epoch to 

introduce data augmentation. 
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• To add gradient clipping to the optimizer with a clip 

value of 1.0. 

• To use the ’tanh’ activation function for the LSTM 

layer. 

• To set the learning rate of the optimizer to 0.001. 

• to implement early stopping with a patience of 10 

epochs. 

• To use the Adam optimizer with the default learning 

rate. 

TABLE III 

SUMMARY OF THE USED SECOND LSTM MODEL  

Model: sequential 

Layer (type) Output Shape Param # 

lstm 13 (LSTM) (None, 128) 66560 

dense 11 (Dense) (None, 2) 258 

Total params: 66,818 

Trainable params: 66,818 

Non-trainable params: 0 

Predicted Sine: 0.8304228782653809 

Predicted Cosine: 0.52862938165664673 

 

The new LSTM model formed when 10 solutions are applied 

to the 1st LSTM model is shown in Table 3. When the sine and 

cosine values in Table 3 and Table 1 are examined, it is seen 

that the new implementations have reduced the loss value and 

are close to the real value. 

Now, if a model is to be built with Reinforcement Learning 

Algorithm, the feature of the model is as follows: 

The code defines a special environment 

called ”SineCosineEnv” to simulate the predicted sine and 

cosine values for certain angles. It uses a 64 element LSTM 

model and a dense layer to predict values. The reinforcement 

learning algorithm used is Deep Q-Networks (DQN) by  Stable-

Baselines3.  The DQN agent is trained for 100,000 time steps 

using ”MlpPolicy” with MLP architecture. The agent takes the 

current normalized angle as input and learns to estimate the 

corresponding sine and cosine values in an effort to minimize 

the standard error between the predictions and the actual values. 

Enhanced learning features: 

• Environment: A special environment presents the 

problem of estimating the sine and cosine values for angles. 

• DQN: The Deep Q-Network algorithm is used to train 

an agent to make optimal predictions based on actions (angles) 

and rewards (prediction accuracy). 

• Principle: “MlpPolicy” is chosen, which uses a multi- 

layer perceptron (MLP) architecture to select actions in discrete 

areas. 

• Discovery: DQN uses epsilon-greedy discovery where 

an agent looks for a certain probability (epsilon) and otherwise 

uses its current knowledge. 

• Target Network: DQN uses a target network to 

stabilize learning, using separate networks for action selection 

and value estimation. 

Thus, the code trains the DQN agent to evaluate sine and 

cosine values using an LSTM model in the user environment. 

The trial and error tool learn to make accurate predictions for 

different angles and combines reinforcement learning methods 

such as DQN algorithm, experience repetition, and target 

networks to provide effective learning. 

TABLE IV 

SUMMARY OF THE USED FIRST REINFORCEMENT LEARNING ALGORITHM  

Model: sequential 

Layer (type) Output Shape Param # 

lstm(LSTM) (None, 64) 18896 

dense(Dense) (None, 1) 65 

Total params: 16,961 

Trainable params: 16,961 

Non-trainable params: 0 

Predicted Sine: 0.016603474277024376 

Predicted Cosine: 0.9998621528200435 

 

Comparing the results obtained in Table 1 with Table 4, the 

estimated values were far from the true values. For this, various 

solution methods should be tried and a result closer to the real 

results should be obtained. To further improve these results, the 

following methods can be tried: 

• Normalizing Target Values: Normalizing target sine 

and cosine values to the range [0, 1] to match the output of the 

model. 

• Normalizing Observations: Shrinking the 

observations (input data) to a smaller range to improve 

convergence and stability during training. 

• Increasing Training Time Steps: Increasing the 

number of training timesteps to enable the agent to learn better 

impressions and approach a more appropriate policy 

• Adjusting the Learning Rate: Experiment with 

different learning rates should be done for the optimizer. 

• Exploring Different Architectures: Try different 

LSTM model architectures, such as increasing the number of 

LSTM units, adding more layers, or using different enable 

functions, to see if the model can capture more complex 

patterns. 

In the next step, a new solution was applied as follows  and 

the results are shown in Table 5. 

• Target sine and cosine values were normalized to the 

range [0, 1] by adding 1 and dividing by 2, 

• Observations (input data) were normalized to the 

interval [0, 1] by dividing by ,360.0, 

• The training time steps are increased to 5000 to allow 

the agent to learn better representations and approach a more 

appropriate policy. 

• The learning rate was set to 0.001 to prevent overshoot 

and improve convergence. 

The results obtained with the changes made are shown    in 

Table 5. When the values in Table 5 and Table 1 are compared, 

the implementations are quite close to the real value. 

C. Results and Discussion 

When all the results are examined, it has been determined 

that deep learning and machine learning algorithms are very 

advantageous in the predictive development of the sine and 

cosine values used in the calculations of the resolver circuit. 
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TABLE V 

SUMMARY OF THE USED SECOND REINFORCEMENT LEARNING ALGORITHM  

Model: sequential 

Layer (type) Output Shape Param # 

lstm(LSTM) (None, 64) 18896 

dense(Dense) (None, 1) 65 

Total params: 16,961 

Trainable params: 16,961 

Non-trainable params: 0 

Predicted Sine: 0.8367458 

Predicted Cosine: 0.519999 

 

These determinations have emerged by developing LSTM 

and Reinforcement algorithms. These algorithms can be further 

developed according to the related problem and the inputs used, 

and their architecture can become a very different role. The 

important point here is the nature and number of the problem 

and the data used. In the studies, a system specific to our 

problem and specific to the data type we use has been 

developed and development processes have been carried out 

with LSTM and Reinforcement learning algorithm 

architectures. When all the results are examined, the absolute 

result is that the algorithm can be improved. 

V. CONCLUSIONS 

In conclusion, the application of LSTM and Reinforcement 

Learning algorithms to the resolver circuit used in electric 

motors has shown promising results in accurately predicting 

sine and cosine values. By optimizing the LSTM model with 

more units (128), larger batch sizes (32), and longer sequence 

length (5), we were able to improve model accuracy and 

convergence. The addition of L2 regularization (0.01) and 

gradient clipping  (1.0)  further  stabilized  the learning process, 

preventing overfitting and improving generalization. 

Additionally, using the ”tanh” trigger function and using an 

early shutdown with a 10-epoch delay improved the model’s 

performance. 

For the reinforcement learning algorithm, normalizing the 

target sine and cosine values along with the input data allowed 

the agent to make more accurate predictions. With an increase 

in the number of learning time steps (5000) and  a learning rate 

of 0.001, the agent learned to better represent the environment 

and moved closer to a more appropriate policy. Taken together, 

these results demonstrate the effectiveness of LSTM and 

reinforcement learning approaches to accurately predict motor 

parameters. As for future research, researchers could explore 

the integration of more complex architectures and advanced 

optimization techniques to further enhance the predictive 

capabilities of these algorithms. Furthermore, the inclusion of 

real engine data and the study of various reward functions can 

provide valuable insights into optimizing engine performance 

in practical applications. The combination of these approaches 

promises to improve motor control and efficiency in a variety 

of industrial and automotive applications. 
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